OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities

Jiangang Zhu, Şahin Kaya Özdemir, Lina He, Da-Ren Chen, and Lan Yang  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 16195-16206 (2011)
http://dx.doi.org/10.1364/OE.19.016195


View Full Text Article

Enhanced HTML    Acrobat PDF (1599 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Detecting and characterizing single nanoparticles and airborne viruses are of paramount importance for disease control and diagnosis, for environmental monitoring, and for understanding size dependent properties of nanoparticles for developing innovative products. Although single particle and virus detection have been demonstrated in various platforms, single-shot size measurement of each detected particle has remained a significant challenge. Here, we present a nanoparticle size spectrometry scheme for label-free, real-time and continuous detection and sizing of single Influenza A virions, polystyrene and gold nanoparticles using split whispering-gallery-modes (WGMs) in an ultra-high-Q resonator. We show that the size of each particle and virion can be measured as they continuously bind to the resonator one-by-one, eliminating the need for ensemble measurements, stochastic analysis or imaging techniques employed in previous works. Moreover, we show that our scheme has the ability to identify the components of particle mixtures.

© 2011 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(140.4780) Lasers and laser optics : Optical resonators
(140.3945) Lasers and laser optics : Microcavities
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: June 2, 2011
Revised Manuscript: July 18, 2011
Manuscript Accepted: July 19, 2011
Published: August 9, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Jiangang Zhu, Şahin Kaya Özdemir, Lina He, Da-Ren Chen, and Lan Yang, "Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities," Opt. Express 19, 16195-16206 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-17-16195


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Betzig, J. K. Trautmann, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991). [CrossRef] [PubMed]
  2. R. G. Knollenberg, “The measurement of latex particle sizes using scattering ratios in the rayleigh scattering size range,” J. Aerosol Sci. 20, 331–345 (1989). [CrossRef]
  3. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Meth. 5, 591–596 (2008). [CrossRef]
  4. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105, 20701–20704 (2008). [CrossRef] [PubMed]
  5. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006). [CrossRef] [PubMed]
  6. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 10, 783–787 (2007). [CrossRef]
  7. S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18, 281–287 (2010). [CrossRef] [PubMed]
  8. T. Lu, H. Lee, T. Chen, S. Herchakb, J.-H. Kim, S. E. Frasera, R. C. Flagand, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011). [CrossRef] [PubMed]
  9. T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446, 1066–1069 (2007). [CrossRef] [PubMed]
  10. A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4, 445C450 (2009). [CrossRef]
  11. S. Wang, X. Shana, U. Patela, X. Huanga, J. Lua, J. Lid, and N. Tao, “Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. U.S.A. 107, 16028–16032 (2010). [CrossRef] [PubMed]
  12. A. Mitra, B. Deutsch, F. Ignatovich, C. Dykes, and L. Novotny, “Nano-optofluidic detection of single viruses and nanoparticles,” ACS Nano 4, 1305–1312 (2010). [CrossRef] [PubMed]
  13. F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C. M. Lieber, “Electrical detection of single viruses,” Proc. Natl. Acad. Sci. U.S.A. 101, 14017–14022 (2004). [CrossRef] [PubMed]
  14. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010). [CrossRef]
  15. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995). [CrossRef] [PubMed]
  16. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000). [CrossRef]
  17. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultrahigh-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef] [PubMed]
  18. A Mazzei, S Gotzinger, L De S Menezes, G Zumofen, O Benson, and V Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007). [CrossRef] [PubMed]
  19. L. Chantada, N. I. Nikolaev, A. L. Ivanov, P. Borri, and W. Langbein, “Optical resonances in microcylinders: response to perturbations for biosensing,” J. Opt. Soc. Am. B 25, 1312–1321 (2008). [CrossRef]
  20. J. Zhu, S. K. Ozdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18, 23535–23543 (2010). [CrossRef] [PubMed]
  21. X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A , 83, 023803 (2011). [CrossRef]
  22. The Universal Database of the International Committee on Taxonomy of Viruses (ICTVdB, http://www.ictvdb.org/ICTVdB/index.htm ).
  23. S. K. Ozdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011). [CrossRef]
  24. K. R. Hiremath and V. N. Astratov, “Perturbations of whispering gallery modes by nanoparticles embedded in microcavities,” Opt. Express 16, 5421–5426 (2008) [CrossRef] [PubMed]
  25. H.-C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor—analysis for adsorption of rodlike bacteria,” Opt. Express 15, 17410–17423 (2007) [CrossRef] [PubMed]
  26. W. Kim, S. K. Ozdemir, J. Zhu, L. He, and L. Yang, “Demonstration of mode splitting in an optical microcavity in aqueous environment,” Appl. Phys. Lett. 97, 071111 (2010). [CrossRef]
  27. M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes,” Biophys J. 92, 4466–4472 (2007). [CrossRef] [PubMed]
  28. I. Teraoka and S. Arnold, “Theory on resonance shifts in TE and TM whispering gallery modes by non-radial perturbations for sensing applications,” J. Opt. Soc. Am. B. 23, 1381–1389 (2006). [CrossRef]
  29. J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 123704 (2010). [CrossRef]
  30. M. Noto, D. Kenga, I. Teraoka, and S. Arnold, “Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes,” Biophys. J. 92, 3366–4472 (2007). [CrossRef]
  31. X. Yi, Y.-F. Xiao, Y. Li, Y.-C. Liu, B.-B. Li, Z.-P. Liu, and Q. Gong, “Polarization-dependent detection of cylinder nanoparticles with mode splitting in a high-Q whispering-gallery microresonator,” Appl. Phys. Lett. 97, 203705 (2010). [CrossRef]
  32. L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82, 053810 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: AVI (2241 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited