OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Holographic deconvolution microscopy for high-resolution particle tracking

Lisa Dixon, Fook Chiong Cheong, and David G. Grier  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 16410-16417 (2011)
http://dx.doi.org/10.1364/OE.19.016410


View Full Text Article

Enhanced HTML    Acrobat PDF (1640 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Rayleigh-Sommerfeld back-propagation can be used to reconstruct the three-dimensional light field responsible for the recorded intensity in an in-line hologram. Deconvolving the volumetric reconstruction with an optimal kernel derived from the Rayleigh-Sommerfeld propagator itself emphasizes the objects responsible for the scattering pattern while suppressing both the propagating light and also such artifacts as the twin image. Bright features in the deconvolved volume may be identified with such objects as colloidal spheres and nanorods. Tracking their thermally-driven Brownian motion through multiple holographic video images provides estimates of the tracking resolution, which approaches 1 nm in all three dimensions.

© 2011 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(180.6900) Microscopy : Three-dimensional microscopy
(350.4990) Other areas of optics : Particles
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: May 16, 2011
Revised Manuscript: July 19, 2011
Manuscript Accepted: August 1, 2011
Published: August 11, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Lisa Dixon, Fook Chiong Cheong, and David G. Grier, "Holographic deconvolution microscopy for high-resolution particle tracking," Opt. Express 19, 16410-16417 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-17-16410


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006). [CrossRef] [PubMed]
  2. S.-H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15, 1505–1512 (2007). [CrossRef] [PubMed]
  3. S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007). [CrossRef] [PubMed]
  4. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009). [CrossRef] [PubMed]
  5. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010). [CrossRef] [PubMed]
  6. F. C. Cheong, K. Xiao, and D. G. Grier, “Characterization of individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009). [CrossRef]
  7. K. Xiao and D. G. Grier, “Multidimensional optical fractionation with holographic verification,” Phys. Rev. Lett. 104, 028302 (2010). [CrossRef] [PubMed]
  8. F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter (to be published), DOI: . [CrossRef]
  9. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005). [CrossRef] [PubMed]
  10. J. W. Goodman, Introduction to Fourier Optics , 3rd ed. (McGraw-Hill, 2005).
  11. F. C. Cheong and D. G. Grier, “Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy,” Opt. Express 18, 6555–6562 (2010). [CrossRef] [PubMed]
  12. T. Latychevskaia, F. Gehri, and H.-W. Fink, “Depth-resolved holographic reconstructions by three-dimensional deconvolution,” Opt. Express 21, 22527–22544 (2010). [CrossRef]
  13. Y. Cotte, M. F. Toy, N. Pavillon, and C. Depeursinge, “Microscopy image resolution improvement by deconvolution of complex fields,” Opt. Express 18, 19462–19478 (2010). [CrossRef] [PubMed]
  14. T. Savin and P. S. Doyle, “Role of finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E 71, 041106 (2005). [CrossRef]
  15. T. Savin and P. S. Doyle, “Static and dynamic errors in particle tracking microrheology,” Biophys. J. 88, 623–638 (2005). [CrossRef]
  16. L. Dixon, F. C. Cheong, and D. G. Grier, “Holographic particle-streak velocimetry,” Opt. Express 19, 4393–4398 (2011). [CrossRef] [PubMed]
  17. G. C. Sherman, “Application of the convolution theorem to Rayleigh’s integral formulas,” J. Opt. Soc. Am. 57, 546–547 (1967). [CrossRef] [PubMed]
  18. U. Schnars and W. P. O. Jüptner, “Digital recording and reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002). [CrossRef]
  19. T. Yu, C. H. Sow, A. Gantimahapatruni, F. C. Cheong, Y. W. Zhu, K. C. Chin, X. J. Xu, C. T. Lim, Z. X. Shen, J. T. L. Thong, and A. T. S. Wee, “Patterning and fusion of CuO nanorods with a focused laser beam,” Nanotechnology 16, 1238–1244 (2005). [CrossRef]
  20. J. F. Nye, Natural Focusing and Fine Structure of Light (Institute of Physics Publishing, 1999).
  21. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996). [CrossRef]
  22. Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C. Lubensky, and A. G. Yodh, “Brownian motion of an ellipsoid,” Science 314, 626–630 (2009). [CrossRef]
  23. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, 1986).
  24. C. J. Hernandez and T. G. Mason, “Colloidal alphabet soup: Monodisperse dispersions of shape-designed LithoParticles,” J. Phys. Chem. 111, 4477–4480 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (1904 KB)      QuickTime
» Media 2: MPG (1992 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited