OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles

Stephen H. Simpson and Simon Hanna  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 16526-16541 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1634 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The accuracy of the discrete dipole approximation (DDA) for computing forces and torques in optical trapping experiments is discussed in the context of dielectric spheres and a range of low symmetry particles, including particles with geometric anisotropy (spheroids), optical anisotropy (birefringent spheres) and structural inhomogeneity (core-shell spheres). DDA calculations are compared with the results of exact T-matrix theory. In each case excellent agreement is found between the two methods for predictions of optical forces, torques, trap stiffnesses and trapping positions. Since the DDA lends itself to calculations on particles of arbitrary shape, the study is augmented by considering more general systems which have received recent experimental interest. In particular, optical forces and torques on low symmetry letter-shaped colloidal particles, birefringent quartz cylinders and biphasic Janus particles are computed and the trapping behaviour of the particles is discussed. Very good agreement is found with the available experimental data. The efficiency of the DDA algorithm and methods of accelerating the calculations are also discussed.

© 2011 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(290.5825) Scattering : Scattering theory

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: June 13, 2011
Revised Manuscript: July 13, 2011
Manuscript Accepted: July 13, 2011
Published: August 12, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Stephen H. Simpson and Simon Hanna, "Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles," Opt. Express 19, 16526-16541 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Fällman and O. Axner, “Influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers,” Appl. Opt. 42, 3915–3926 (2003). [CrossRef] [PubMed]
  2. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996). [CrossRef]
  3. D. A. White, “Numerical modeling of optical gradient traps using the vector finite element method,” J. Comp. Phys. 159, 13–37 (2000). [CrossRef]
  4. R. C. Gauthier, “Computation of the optical trapping force using an FDTD based technique,” Optics Express 13, 3707–3718 (2005). URL http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-10-3707 . [CrossRef] [PubMed]
  5. D. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express 16, 2942–2957 (2008). URL http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-5-2942 . [CrossRef] [PubMed]
  6. P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E 72, 046708 (2005). [CrossRef]
  7. P. C. Chaumet and C. Billaudeau, “Coupled dipole method to compute optical torque: Application to a micro-propeller,” J. Appl. Phys. 101, 023106 (2007). [CrossRef]
  8. D. Bonessi, K. Bonin, and T. Walker, “Optical forces on particles of arbitrary shape and size,” J. Opt. A: Pure Appl. Opt. 9(8), S228–S234 (2007). [CrossRef]
  9. S. H. Simpson and S. Hanna, “Holographic optical trapping of microrods and nanowires,” J. Opt. Soc. Am. A 27, 1255–1264 (2010). [CrossRef]
  10. L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys. 108(7), 073110 (2010). [CrossRef]
  11. V. L. Y. Loke, M. P. Mengüç, and T. A. Nieminen, “Discrete dipole approximation with surface interaction: Computational toolbox for MATLAB,” J. Quant. Spectrosc. Radiat. Transf. 112, 1711–1725 (2011). [CrossRef]
  12. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001). [CrossRef]
  13. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University Press, 2002).
  14. S. H. Simpson and S. Hanna, “Numerical calculation of inter-particle forces arising in association with holographic assembly,” J. Opt. Soc. Am. A 23, 1419–1431 (2006). [CrossRef]
  15. F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transf. 79, 775–824 (2003). [CrossRef]
  16. V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transf. 110, 1460–1471 (2009). [CrossRef]
  17. J. N. Wilking and T. G. Mason, “Multiple trapped states and angular Kramers hopping of complex dielectric shapes in a simple optical trap,” Europhys. Lett. 81, 58005 (2008). [CrossRef]
  18. C. Deufel, S. Forth, C. R. Simmons, S. Dejgosha, and M. D. Wang, “Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection,” Nat. Methods 4, 223–225 (2007). [CrossRef] [PubMed]
  19. B. Gutierrez-Medina, J. O. L. Andreasson, W. J. Greenleaf, A. Laporta, and S. M. Block, “An optical apparatus for rotation and trapping,” Methods Enzymol. 474, 377–404 (2010). [CrossRef]
  20. I. Kretzschmar and J. H. K. Song, “Surface-anisotropic spherical colloids in geometric and field confinement,” Curr. Opin. Colloid Interface Sci. 16, 84–95 (2011). [CrossRef]
  21. Z. F. Lin and S. T. Chui, “Electromagnetic scattering by optically anisotropic magnetic particle,” Phys. Rev. E 69, 056614 (2004). [CrossRef]
  22. S. H. Simpson and S. Hanna, “Optical angular momentum transfer by Laguerre-Gaussian beams,” J. Opt. Soc. Am. A 26, 625–638 (2009). [CrossRef]
  23. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  24. C. J. R. Sheppard and S. Saghafi, “Electromagnetic Gaussian beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 16, 1381–1386 (1999). [CrossRef]
  25. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994). [CrossRef]
  26. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106, 558–589 (2007). [CrossRef]
  27. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  28. A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, “Radiation forces in the discrete dipole approximation,” J. Opt. Soc. Am. A 18, 1944–1953 (2001). [CrossRef]
  29. B. T. Draine and J. C. Weingartner, “Radiative torques on interstellar grains.1. Superthermal spin-up,” Astrophys. J. 470, 551–565 (1996). [CrossRef]
  30. S. H. Simpson and S. Hanna, “First-order nonconservative motion of optically trapped nonspherical particles,” Phys. Rev. E 82, 031,141 (2010).
  31. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  32. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep., Phys. Lett. 52, 133–201 (1979).
  33. A. B. Stilgoe, T. A. Nieminen, G. Knoner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16, 15039–15051 (2008). URL http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2661 . [CrossRef] [PubMed]
  34. S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430–443 (2007). [CrossRef]
  35. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998). [CrossRef]
  36. S. H. Simpson, D. C. Benito, and S. Hanna, “Polarization-induced torque in optical traps,” Phys. Rev. A 76, 043408 (2007). [CrossRef]
  37. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited