OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Subwavelength image manipulation through an oblique layered system

Jin Wang, Hui Yuan Dong, Kin Hung Fung, Tie Jun Cui, and Nicholas X. Fang  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 16809-16820 (2011)
http://dx.doi.org/10.1364/OE.19.016809


View Full Text Article

Enhanced HTML    Acrobat PDF (1550 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show in this work an oblique layered system that is capable of manipulating two dimensional subwavelength images. Through properly designed planar layered system, we demonstrate analytically that lateral image shift could be achieved with subwavelength resolution, due to the asymmetry of the dispersion curve of constant frequency. Further, image rotation with arbitrary angle, as well as image magnification could be generated through a concentric geometry of the alternating layered system. In addition, we verify the image mechanism using full wave electromagnetic (EM) simulations. Utilizing the proposed layered system, optical image of an object with subwavelength features can be projected allowing for further optical processing of the image by conventional optics.

© 2011 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(160.1190) Materials : Anisotropic optical materials

ToC Category:
Imaging Systems

History
Original Manuscript: May 17, 2011
Revised Manuscript: July 5, 2011
Manuscript Accepted: August 1, 2011
Published: August 15, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Jin Wang, Hui Yuan Dong, Kin Hung Fung, Tie Jun Cui, and Nicholas X. Fang, "Subwavelength image manipulation through an oblique layered system," Opt. Express 19, 16809-16820 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-18-16809


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbe, “Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat. 9, 413–468 (1873). [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef] [PubMed]
  4. T. J. Cui, D. R. Smith, and R. Liu, eds., Metamaterials—Theory, Design, and Applications (Springer, 2009). [PubMed]
  5. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
  6. S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).
  7. T. A. Morgado and M. G. Silveirinha, “Transport of an arbitrary near-field component with an array of tilted wires,” New J. Phys. 11, 083023 (2009). [CrossRef]
  8. T. A. Morgado, J. S. Marcos, M. G. Silveirinha, and S. I. Maslovski, “Experimental verification of full reconstruction of the near-field with a metamaterial lens,” Appl. Phys. Lett. 97, 144102 (2010). [CrossRef]
  9. A. Rahman, P. A. Belov, Y. Hao, and C. Parini, “Periscope-like endoscope for transmission of a near field in the infrared range,” Opt. Lett. 35, 142–144 (2010). [CrossRef] [PubMed]
  10. P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
  11. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006). [CrossRef]
  12. X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75, 045103 (2007). [CrossRef]
  13. Y. Jin, “Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves,” Prog. Electromagn. Res. 105, 347–364 (2010). [CrossRef]
  14. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006). [CrossRef]
  15. K. J. Webb and M. Yang, “Subwavelength imaging with a multilayer silver film structure,” Opt. Lett. 31, 2130–2132 (2006). [CrossRef] [PubMed]
  16. B. Wang, L. Shen, and S. He, “Superlens formed by a one-dimensional dielectric photonic crystal,” J. Opt. Soc. Am. B 25, 391–395 (2008). [CrossRef]
  17. B. Zeng, X. Yang, C. Wang, Q. Feng, and X. Luo, “Super-resolution imaging at different wavelengths by using a one-dimensional metamaterial structure,” J. Opt. 12, 035104 (2010). [CrossRef]
  18. R. Kotynski, T. Stefaniuk, and A. Pastuszczak, “Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers,” arXiv:1002.0658v1.
  19. R. Kotynski and T. Stefaniuk, “Multiscale analysis of subwavelength imaging with metal-dielectric multilayers,” Opt. Lett. 35, 1133–1135 (2010). [CrossRef] [PubMed]
  20. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). [CrossRef] [PubMed]
  21. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of the hyperlens,” J. Opt. Soc. Am. A 24, A52–A59 (2007). [CrossRef]
  22. A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett. 32, 3432–3434 (2007). [CrossRef] [PubMed]
  23. W. Wang, H. Xing, L. Fang, Y. Liu, J. Ma, L. Lin, C. Wang, and X. Luo, “Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial,” Opt. Express 16, 21142–21148 (2008). [CrossRef] [PubMed]
  24. M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008). [CrossRef]
  25. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007). [CrossRef] [PubMed]
  26. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef] [PubMed]
  27. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006). [CrossRef]
  28. B. Stein, J. Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010). [CrossRef]
  29. A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011). [CrossRef]
  30. H. Chen and C. T. Chan, “Electromagnetic wave manipulation by layered systems using the transformation media concept,” Phys. Rev. B 78, 054204 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited