OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Multivariate optical computing using a digital micromirror device for fluorescence and Raman spectroscopy

Zachary J. Smith, Sven Strombom, and Sebastian Wachsmann-Hogiu  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 16950-16962 (2011)
http://dx.doi.org/10.1364/OE.19.016950


View Full Text Article

Enhanced HTML    Acrobat PDF (868 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multivariate optical computer has been constructed consisting of a spectrograph, digital micromirror device, and photomultiplier tube that is capable of determining absolute concentrations of individual components of a multivariate spectral model. We present experimental results on ternary mixtures, showing accurate quantification of chemical concentrations based on integrated intensities of fluorescence and Raman spectra measured with a single point detector. We additionally show in simulation that point measurements based on principal component spectra retain the ability to classify cancerous from noncancerous T cells.

© 2011 OSA

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 27, 2011
Revised Manuscript: August 4, 2011
Manuscript Accepted: August 6, 2011
Published: August 15, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Zachary J. Smith, Sven Strombom, and Sebastian Wachsmann-Hogiu, "Multivariate optical computing using a digital micromirror device for fluorescence and Raman spectroscopy," Opt. Express 19, 16950-16962 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-18-16950


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008). [CrossRef] [PubMed]
  2. W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, “In vivo brain tumor demarcation using optical spectroscopy,” Photochem. Photobiol. 73, 396–402 (2001). [CrossRef] [PubMed]
  3. Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt.Lett. 34, 2081–2083 (2009). [CrossRef] [PubMed]
  4. B. D. Beier, R. G. Quivey, and A. J. Berger, “Identification of different bacterial species in biofilms using confocal Raman microscopy,” J. Biomed. Opt. 15, 066001 (2010). [CrossRef]
  5. M. Krause, P. Räsch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80, 8568–8575 (2008). [CrossRef] [PubMed]
  6. P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005). [CrossRef] [PubMed]
  7. W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 4050–4055 (2008). [CrossRef] [PubMed]
  8. S. Patwardhan, S. Bloch, S. Achilefu, and J. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express 13, 2564–2577 (2005). [CrossRef] [PubMed]
  9. M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” J. Biomed. Opt. 13, 020506 (2008). [CrossRef] [PubMed]
  10. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997). [CrossRef]
  11. K. M. Weinberger, E. Wiedenmann, S. Böhm, and W. Jilg, “Sensitive and accurate quantitation of hepatitis B virus DNA using a kinetic fluorescence detection system (TaqMan PCR),” J. Virol. Methods 85, 75–82 (2000). [CrossRef] [PubMed]
  12. H. Cho, B. R. Baker, S. Wachsmann-Hogiu, C. V. Pagba, T. A. Laurence, S. M. Lane, L. P. Lee, and J. B.-H. Tok, “Aptamer-based serrs sensor for thrombin detection,” Nano Lett. 8, 4386–4390 (2008). [CrossRef]
  13. J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008). [CrossRef] [PubMed]
  14. T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009). [CrossRef] [PubMed]
  15. J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005). [CrossRef] [PubMed]
  16. M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, and M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998). [CrossRef] [PubMed]
  17. O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001). [CrossRef]
  18. F. G. Haibach, A. E. Greer, M. V. Schiza, R. J. Priore, O. O. Soyemi, and M. L. Myrick, “On-line reoptimization of filter designs for multivariate optical elements,” Appl. Opt. 42, 1833–1838 (2003). [CrossRef] [PubMed]
  19. F. G. Haibach and M. L. Myrick, “Precision in multivariate optical computing,” Appl. Opt. 43, 2130–2140 (2004). [CrossRef] [PubMed]
  20. N. Uzunbajakava, P. de Peinder, G. W. ’t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006). [CrossRef] [PubMed]
  21. B. M. Davis, A. J. Hemphill, D. Cebeci Maltaş, M. A. Zipper, P. Wang, and D. Ben-Amotz, “Multivariate hyper-spectral Raman imaging using compressive detection,” Anal. Chem. 0 (2011).
  22. N. T. Quyen, E. D. Silva, N. Q. Dao, and M. D. Jouan, “New Raman spectrometer using a digital micromirror device and a photomultiplier tube detector for rapid on-line industrial analysis. Part I: Description of the prototype and preliminary results,” Appl. Spectrosc. 62, 273–278 (2008). [CrossRef] [PubMed]
  23. P. H. C. Eilers, “A perfect smoother,” Anal. Chem. 75, 3631–3636 (2003). [CrossRef] [PubMed]
  24. J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited