OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Super-sensitivity in label-free protein sensing using a nanoslot nanolaser

Shota Kita, Shoji Hachuda, Shota Otsuka, Tatsuro Endo, Yasunori Imai, Yoshiaki Nishijima, Hiroaki Misawa, and Toshihiko Baba  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17683-17690 (2011)
http://dx.doi.org/10.1364/OE.19.017683


View Full Text Article

Acrobat PDF (2558 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Microphotonic sensors have been actively studied with increasing demands for label-free biosensing in medical diagnoses and life sciences. For high-throughput and low-cost sensing, a high sensitivity is crucial for eliminating the pre-concentration process, while a simple setup of sensors is also desirable. This paper demonstrates a super-sensitivity for protein, which satisfies these requirements. The key device is a photonic crystal nanolaser, in particular with a nanoslot. Even using a simple setup, the nanolaser achieves an extraordinary-low detection limit for BSA protein, i.e. 255 fM on an average, which cannot be explained by its bulk index sensitivity. The specific adsorption of the protein is observed only around the nanoslot with strong laser intensity. This suggests that the super-sensitivity arises from the effective trapping of protein in the nanoslot.

© 2011 OSA

OCIS Codes
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(140.3945) Lasers and laser optics : Microcavities
(230.5298) Optical devices : Photonic crystals

ToC Category:
Sensors

History
Original Manuscript: June 14, 2011
Revised Manuscript: July 25, 2011
Manuscript Accepted: August 13, 2011
Published: August 24, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Shota Kita, Shoji Hachuda, Shota Otsuka, Tatsuro Endo, Yasunori Imai, Yoshiaki Nishijima, Hiroaki Misawa, and Toshihiko Baba, "Super-sensitivity in label-free protein sensing using a nanoslot nanolaser," Opt. Express 19, 17683-17690 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-18-17683


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Ray, H. Chandra, and S. Srivastava, “Nanotechniques in proteomics: current status, promises and challenges,” Biosens. Bioelectron.25(11), 2389–2401 (2010). [CrossRef] [PubMed]
  2. X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  3. P. R. Srinivas, M. Verma, Y. M. Zhao, and S. Srivastava, “Proteomics for cancer biomarker discovery,” Clin. Chem.48(8), 1160–1169 (2002). [PubMed]
  4. D. A. Lashkari, J. L. DeRisi, J. H. McCusker, A. F. Namath, C. Gentile, S. Y. Hwang, P. O. Brown, and R. W. Davis, “Yeast microarrays for genome wide parallel genetic and gene expression analysis,” Proc. Natl. Acad. Sci. U.S.A.94(24), 13057–13062 (1997). [CrossRef] [PubMed]
  5. B. Schweitzer and S. F. Kingsmore, “Measuring proteins on microarrays,” Curr. Opin. Biotechnol.13(1), 14–19 (2002). [CrossRef] [PubMed]
  6. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999). [CrossRef]
  7. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007). [CrossRef] [PubMed]
  8. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007). [CrossRef] [PubMed]
  9. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express15(8), 4530–4535 (2007). [CrossRef] [PubMed]
  10. M. Lončar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003). [CrossRef]
  11. S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolaser with and without nanoslots—design, fabrication, lasing and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron.(to be published).
  12. S. Kita, S. Hachuda, K. Nozaki, and T. Baba, “Nanoslot laser,” Appl. Phys. Lett.97(16), 161108 (2010). [CrossRef]
  13. S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express16(11), 8174–8180 (2008). [CrossRef] [PubMed]
  14. M. A. Dündar, E. C. I. Ryckebosch, R. Nötzel, F. Karouta, L. J. van Ijzendoorn, and R. W. van der Heijden, “Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index,” Opt. Express18(5), 4049–4056 (2010). [CrossRef] [PubMed]
  15. S. Kita, Y. Nishijima, H. Misawa and T. Baba, "Label-free biosensing utilizing ultrasmall photonic crystal nanolaser," in Integrated Photonics and Nanophotonics Research and Applications, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMB3.
  16. T. W. Lu, P. T. Lin, K.-U. Sio, and P.-T. Lee, “Optical sensing of square lattice photonic crystal point-shifted nanocavity for protein adsorption detection,” Appl. Phys. Lett.96(21), 213702 (2010). [CrossRef]
  17. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett.95(14), 143901 (2005). [CrossRef] [PubMed]
  18. A. Di Falco, L. O'Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94(6), 063503 (2009). [CrossRef]
  19. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express15(12), 7506–7514 (2007). [CrossRef] [PubMed]
  20. C. Silva, F. Sousa, G. G. Bitz, and A. Cavaco-Paulo, “Chemical modifications on proteins using glutaraldehyde,” Food Technol. Biotechnol.42, 51–56 (2004).
  21. C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc.127(33), 11636–11645 (2005). [CrossRef] [PubMed]
  22. M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes,” Biophys. J.92(12), 4466–4472 (2007). [CrossRef] [PubMed]
  23. H. J. Butt, K. Graf, and M. Kappl, Physics and Chemistry of Interfaces (Wiley-VCH, 2003). p. 195.
  24. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009). [CrossRef] [PubMed]
  25. K. Shigemori, S. Nishizawa, T. Yokobori, T. Shioya, and N. Teramae, “Selective binding of very hydrophilic H2PO4- anion by a hydrogen-bonding receptor adsorbed at the 1,2-dichloroethane-water interface,” N. J. Chem.26(9), 1102–1104 (2002). [CrossRef]
  26. R. Piazza, “‘Thermal forces’: colloids in temperature gradients,” J. Phys. Condens. Matter16(38), S4195–S4211 (2004). [CrossRef]
  27. D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip11(6), 995–1009 (2011). [CrossRef] [PubMed]
  28. W. C. Law, K. T. Yong, A. Baev, R. Hu, and P. N. Prasad, “Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods,” Opt. Express17(21), 19041–19046 (2009). [CrossRef] [PubMed]
  29. D. S. Grubisha, R. J. Lipert, H. Y. Park, J. Driskell, and M. D. Porter, “Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels,” Anal. Chem.75(21), 5936–5943 (2003). [CrossRef] [PubMed]
  30. J. P. Kim, B. Y. Lee, S. Hong, and S. J. Sim, “Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments,” Anal. Biochem.381(2), 193–198 (2008). [CrossRef] [PubMed]
  31. A. Densmore, M. Vachon, D. X. Xu, S. Janz, R. Ma, Y. H. Li, G. Lopinski, A. Delâge, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett.34(23), 3598–3600 (2009). [CrossRef] [PubMed]
  32. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express15(6), 3169–3176 (2007). [CrossRef] [PubMed]
  33. S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem.141(1), 13–19 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited