OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study

Caigang Zhu and Quan Liu  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17799-17812 (2011)
http://dx.doi.org/10.1364/OE.19.017799


View Full Text Article

Enhanced HTML    Acrobat PDF (1132 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The accurate understanding of optical properties of human tissues plays an important role in the optical diagnosis of early epithelial cancer. Many inverse models used to determine the optical properties of a tumor have assumed that the tumor was semi-infinite, which infers infinite width and length but finite thickness. However, this simplified assumption could lead to large errors for small tumor, especially at the early stages. We used a modified Monte Carlo code, which is able to simulate light transport in a layered tissue model with buried tumor-like targets, to investigate the validity of the semi-infinite tumor assumption in two common epithelial tissue models: a squamous cell carcinoma (SCC) tissue model and a basal cell carcinoma (BCC) tissue model. The SCC tissue model consisted of three layers, i.e. the top epithelium, the middle tumor and the bottom stroma. The BCC tissue model also consisted of three layers, i.e. the top epidermis, the middle tumor and the bottom dermis. Diffuse reflectance was simulated for two common fiber-optic probes. In one probe, both source and detector fibers were perpendicular to the tissue surface; while in the other, both fibers were tilted at 45 degrees relative to the normal axis of the tissue surface. It was demonstrated that the validity of the semi-infinite tumor model depends on both the fiber-optic probe configuration and the tumor dimensions. Two look-up tables, which relate the validity of the semi-infinite tumor model to the tumor width in terms of the source-detector separation, were derived to guide the selection of appropriate tumor models and fiber optic probe configuration for the optical diagnosis of early epithelial cancers.

© 2011 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 15, 2011
Revised Manuscript: August 21, 2011
Manuscript Accepted: August 21, 2011
Published: August 25, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Caigang Zhu and Quan Liu, "Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study," Opt. Express 19, 17799-17812 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-18-17799


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. American Cancer Society, Cancer Facts and Figs. 2010 (American Cancer Society, Atlanta, 2010).
  2. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt.44(20), 4291–4305 (2005). [CrossRef] [PubMed]
  3. D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006). [CrossRef] [PubMed]
  4. S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, E. N. Atkinson, R. R. Richards-Kortum, and M. Follen, “Fluorescence spectroscopy for cervical precancer detection: Is there variance across the menstrual cycle?” J. Biomed. Opt.7(4), 595–602 (2002). [CrossRef] [PubMed]
  5. I. Pavlova, C. R. Weber, R. A. Schwarz, M. Williams, A. El-Naggar, A. Gillenwater, and R. Richards-Kortum, “Monte Carlo model to describe depth selective fluorescence spectra of epithelial tissue: applications for diagnosis of oral precancer,” J. Biomed. Opt.13(6), 064012 (2008). [CrossRef] [PubMed]
  6. M. C. Skala, G. M. Palmer, K. M. Vrotsos, A. Gendron-Fitzpatrick, and N. Ramanujam, “Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy,” Opt. Express15(12), 7863–7875 (2007). [CrossRef] [PubMed]
  7. U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc.55(8), 955–959 (2001). [CrossRef]
  8. Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt.45(19), 4776–4790 (2006). [CrossRef] [PubMed]
  9. E. Drakaki, E. Kaselouris, M. Makropoulou, A. A. Serafetinides, A. Tsenga, A. J. Stratigos, A. D. Katsambas, and C. Antoniou, “Laser-induced fluorescence and reflectance spectroscopy for the discrimination of basal cell carcinoma from the surrounding normal skin tissue,” Skin Pharmacol. Physiol.22(3), 158–165 (2009). [CrossRef] [PubMed]
  10. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999). [CrossRef] [PubMed]
  11. S. Merritt, F. Bevilacqua, A. J. Durkin, D. J. Cuccia, R. Lanning, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “Coregistration of diffuse optical spectroscopy and magnetic resonance imaging in a rat tumor model,” Appl. Opt.42(16), 2951–2959 (2003). [CrossRef] [PubMed]
  12. G. M. Palmer, C. F. Zhu, T. M. Breslin, F. S. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis,” Appl. Opt.45(5), 1072–1078 (2006). [CrossRef] [PubMed]
  13. W. Verkruysse, R. Zhang, B. Choi, G. Lucassen, L. O. Svaasand, and J. S. Nelson, “A library based fitting method for visual reflectance spectroscopy of human skin,” Phys. Med. Biol.50(1), 57–70 (2005). [CrossRef] [PubMed]
  14. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt.38(31), 6628–6637 (1999). [CrossRef] [PubMed]
  15. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys.10(6), 824–830 (1983). [CrossRef] [PubMed]
  16. Q. Liu and N. Ramanujam, “Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media,” J. Opt. Soc. Am. A24(4), 1011–1025 (2007). [CrossRef] [PubMed]
  17. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte-Carlo modeling of light-propagation in highly scattering tissues. 1. Model predictions and comparison with diffusion-theory,” IEEE Trans. Bio-Med. Eng.36(12), 1162–1168 (1989). [CrossRef]
  18. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett.26(17), 1335–1337 (2001). [CrossRef] [PubMed]
  19. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006). [CrossRef] [PubMed]
  20. C. M. Gardner and A. J. Welch, “Monte Carlo simulation of light transport in tissue: unscattered absorption events,” Appl. Opt.33(13), 2743–2745 (1994). [CrossRef] [PubMed]
  21. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995). [CrossRef] [PubMed]
  22. Q. Liu, C. F. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt.8(2), 223–236 (2003). [CrossRef] [PubMed]
  23. C. Zhu and Q. Liu, “Validity of the semi-infinite tumor model in tissue optics: a Monte Carlo study,” in 2010 Photonics Global Conference (PGC) (IEEE, 2010), pp. 1–4
  24. B. L. Allen-Hoffmann, S. J. Schlosser, C. A. R. Ivarie, C. A. Sattler, L. F. Meisner, and S. L. O’Connor, “Normal growth and differentiation in a spontaneously immortalized near-diploid human keratinocyte cell line, NIKS,” J. Invest. Dermatol.114(3), 444–455 (2000). [CrossRef] [PubMed]
  25. L. Quan and N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Lett.27(2), 104–106 (2002). [CrossRef] [PubMed]
  26. C. Kortun, Y. R. Hijazi, and D. Arifler, “Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer,” J. Biomed. Opt.13(3), 034014 (2008). [CrossRef] [PubMed]
  27. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004). [CrossRef] [PubMed]
  28. V. Kumar, A. K. Abbas, N. Fausto, and J. Aster, eds., Robbins and Cotran Pathologic Basis of Disease, 8th ed. (Saunders, 2009), pp. 1180–1181.
  29. J. Choi, J. Choo, H. Chung, D. G. Gweon, J. Park, H. J. Kim, S. Park, and C. H. Oh, “Direct observation of spectral differences between normal and basal cell carcinoma (BCC) tissues using confocal Raman microscopy,” Biopolymers77(5), 264–272 (2005). [CrossRef] [PubMed]
  30. Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat.24(3-4), 183–189 (2002). [CrossRef] [PubMed]
  31. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006). [CrossRef] [PubMed]
  32. Q. Liu and N. Ramanujam, “Experimental proof of the feasibility of using an angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media,” Opt. Lett.29(17), 2034–2036 (2004). [CrossRef] [PubMed]
  33. T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt.10(4), 044016 (2005). [CrossRef] [PubMed]
  34. A. M. J. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt.10(4), 044017 (2005). [CrossRef] [PubMed]
  35. D. C. Walker, B. H. Brown, A. D. Blackett, J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas.24(1), 121–135 (2003). [CrossRef] [PubMed]
  36. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001). [CrossRef] [PubMed]
  37. J. Qu, C. Macaulay, S. Lam, and B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt.33(31), 7397–7405 (1994). [CrossRef] [PubMed]
  38. S. Prestin, C. Betz, and M. Kraft, “Measurement of epithelial thickness within the oral cavity using optical coherence tomography (OCT),” Proc. SPIE7548, 75482F, 75482F-9 (2010). [CrossRef]
  39. R. Sharma, “Gadolinium toxicity: epidermis thickness measurement by magnetic resonance imaging at 500 MHz,” Skin Res. Technol.16(3), 339–353 (2010). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited