OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 1 — Jan. 4, 2012

Long-range and long-term interferometric tracking by static and dynamic force-clamp optical tweezers.

A. Guiggiani, B. Torre, A. Contestabile, F. Benfenati, M. Basso, M. Vassalli, and F. Difato  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22364-22376 (2011)
http://dx.doi.org/10.1364/OE.19.022364


View Full Text Article

Enhanced HTML    Acrobat PDF (1555 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical tweezers are recognized single-molecule technique to resolve forces and motion on the molecular scale. Complex biological phenomena, such as cell differentiation and locomotion, require long range tracking capabilities with nanometer resolution over an extended period, to resolve molecular processes on the cellular scale. Here we introduce a real-time control of the microscope stage position to perform long-term tracking, with sub-millisecond resolution, of a bead attached to a neuron, preserving sub-nanometer sensitivity on a spatial range of centimeters, seven orders of magnitude larger. Moreover, the suitability of the system is tested by time- modulating the force-clamp condition to study the role of statically and dynamically applied forces in neuronal differentiation.

© 2011 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.1420) Medical optics and biotechnology : Biology
(170.1530) Medical optics and biotechnology : Cell analysis
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: August 8, 2011
Revised Manuscript: September 10, 2011
Manuscript Accepted: September 10, 2011
Published: October 24, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
A. Guiggiani, B. Torre, A. Contestabile, F. Benfenati, M. Basso, M. Vassalli, and F. Difato, "Long-range and long-term interferometric tracking by static and dynamic force-clamp optical tweezers.," Opt. Express 19, 22364-22376 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-23-22364


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Huber and J. Käs, “Self-regulative organization of the cytoskeleton,” Cytoskeleton (Hoboken)68(5), 259–265 (2011). [CrossRef] [PubMed]
  2. S. Siechen, S. Yang, A. Chiba, and T. Saif, “Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12611–12616 (2009). [CrossRef] [PubMed]
  3. D. E. Ingber, “From cellular mechanotransduction to biologically inspired engineering: 2009 Pritzker Award Lecture, BMES Annual Meeting October 10, 2009,” Ann. Biomed. Eng.38(3), 1148–1161 (2010). [CrossRef] [PubMed]
  4. T. Mammoto and D. E. Ingber, “Mechanical control of tissue and organ development,” Development137(9), 1407–1420 (2010). [CrossRef] [PubMed]
  5. P. Bianco, A. Nagy, A. Kengyel, D. Szatmári, Z. Mártonfalvi, T. Huber, and M. S. Kellermayer, “Interaction forces between F-actin and titin PEVK domain measured with optical tweezers,” Biophys. J.93(6), 2102–2109 (2007). [CrossRef] [PubMed]
  6. S. M. Kalisch, L. Laan, and M. Dogterom, “Force generation by dynamic microtubules in vitro,” Methods Mol. Biol.777, 147–165 (2011). [CrossRef] [PubMed]
  7. C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol.12(3), 163–176 (2011). [CrossRef] [PubMed]
  8. D. Cojoc, F. Difato, E. Ferrari, R. B. Shahapure, J. Laishram, M. Righi, E. M. Di Fabrizio, and V. Torre, “Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components,” PLoS ONE2(10), e1072–e1078 (2007). [CrossRef] [PubMed]
  9. C. O. Mejean, A. W. Schaefer, E. A. Millman, P. Forscher, and E. R. Dufresne, “Multiplexed force measurements on live cells with holographic optical tweezers,” Opt. Express17(8), 6209–6217 (2009). [CrossRef] [PubMed]
  10. A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt.16(5), 051302 (2011). [CrossRef] [PubMed]
  11. A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum.75(6), 2197–2210 (2004). [CrossRef]
  12. H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface5(24), 671–690 (2008). [CrossRef] [PubMed]
  13. E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J.84(2), 1308–1316 (2003). [CrossRef] [PubMed]
  14. F. Difato, E. Ferrari, R. Shahapure, V. Torre, and D. Cojoc, “Optical tweezers microscopy: piconewton forces in cell and molecular biology,” in Nanoscopy and Multidimensional Optical Fluorescence Microscopy, A. Diaspro, ed. (Taylor & Francis, 2010).
  15. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004). [CrossRef] [PubMed]
  16. M. E. Janson and M. Dogterom, “Scaling of microtubule force-velocity curves obtained at different tubulin concentrations,” Phys. Rev. Lett.92(24), 248101 (2004). [CrossRef] [PubMed]
  17. D. J. Carnegie, D. J. Stevenson, M. Mazilu, F. Gunn-Moore, and K. Dholakia, “Guided neuronal growth using optical line traps,” Opt. Express16(14), 10507–10517 (2008). [CrossRef] [PubMed]
  18. D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett.28(8), 657–659 (2003). [CrossRef] [PubMed]
  19. P. Kraikivski, B. Pouligny, and R. Dimova, “Implementing both short- and long-working-distance optical trappings into a commercial microscope,” Rev. Sci. Instrum.77(11), 113703 (2006). [CrossRef]
  20. T. Cižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express16(18), 14024–14035 (2008). [CrossRef] [PubMed]
  21. R. Dasgupta, R. S. Verma, S. Ahlawat, D. Chaturvedi, and P. K. Gupta, “Long-distance axial trapping with Laguerre-Gaussian beams,” Appl. Opt.50(10), 1469–1476 (2011). [CrossRef] [PubMed]
  22. R. Nambiar, A. Gajraj, and J. C. Meiners, “All-optical constant-force laser tweezers,” Biophys. J.87(3), 1972–1980 (2004). [CrossRef] [PubMed]
  23. R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: control of trap shape,” Opt. Express18(11), 11785–11790 (2010). [CrossRef] [PubMed]
  24. T. Aggarwal and M. Salapaka, “Real-time nonlinear correction of back-focal-plane detection in optical tweezers,” Rev. Sci. Instrum.81(12), 123105 (2010). [CrossRef] [PubMed]
  25. S. Perrone, G. Volpe, and D. Petrov, “10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope,” Rev. Sci. Instrum.79(10), 106101 (2008). [CrossRef] [PubMed]
  26. M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng.45(4), 450–457 (2007). [CrossRef]
  27. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17(25), 22718–22725 (2009). [CrossRef] [PubMed]
  28. A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett.92(22), 224104 (2008). [CrossRef]
  29. A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express16(25), 20987–21003 (2008). [CrossRef] [PubMed]
  30. V. Soni, F. M. Hameed, T. Roopa, and G.V. Shivashankar, “Development of an optical tweezer combined with micromanipulation for DNA and protein nanobioscience,” Rev. Sci. Instrum.83, 1464–1470 (2002).
  31. H. T. Ghashghaei, C. Lai, and E. S. Anton, “Neuronal migration in the adult brain: are we there yet?” Nat. Rev. Neurosci.8(2), 141–151 (2007). [CrossRef] [PubMed]
  32. S. H. Parekh, O. Chaudhuri, J. A. Theriot, and D. A. Fletcher, “Loading history determines the velocity of actin-network growth,” Nat. Cell Biol.7(12), 1219–1223 (2005). [CrossRef] [PubMed]
  33. A. Mogilner, “On the edge: modeling protrusion,” Curr. Opin. Cell Biol.18(1), 32–39 (2006). [CrossRef] [PubMed]
  34. R. Shahapure, F. Difato, A. Laio, G. Bisson, E. Ercolini, L. Amin, E. Ferrari, and V. Torre, “Force generation in lamellipodia is a probabilistic process with fast growth and retraction events,” Biophys. J.98(6), 979–988 (2010). [CrossRef] [PubMed]
  35. F. Difato, M. Dal Maschio, E. Marconi, G. Ronzitti, A. Maccione, T. Fellin, L. Berdondini, E. Chieregatti, F. Benfenati, and A. Blau, “Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks,” J. Biomed. Opt.16(5), 051306 (2011). [CrossRef] [PubMed]
  36. F. Difato, Schibalsky L., F. Benfenati, and A. Blau, “Integration of optical manipulation and electrophysiological tools to modulate and record activity in neural networks,” Int. J. Optomechatronics (to be pubblished).
  37. L. Dozio and P. Mantegazza, “Real time distributed control systems using RTAI,” in Proceedings of IEEE Conference on Object-Oriented Real-Time Distributed Computing Symp. (IEEE, 2003), pp. 11–18.
  38. D. Materassi, P. Baschieri, B. Tiribilli, G. Zuccheri, and B. Samorì, “An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments,” Rev. Sci. Instrum.80(8), 084301 (2009). [CrossRef] [PubMed]
  39. Y. C. Wenas and M. D. Hoogerland, “A versatile all-optical Bose-Einstein condensates apparatus,” Rev. Sci. Instrum.79(5), 053101 (2008). [CrossRef] [PubMed]
  40. M. Basso, R. Bucher, M. Romagnoli, and M. Vassalli, “Real-Time Control with Linux: A Web Services Approach,” in Proceedings of IEEE Conference on Decision and Control, and the European Control Conference (IEEE, 2005), pp. 2733–2738.
  41. H. Babu, G. Cheung, H. Kettenmann, T. D. Palmer, and G. Kempermann, “Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons,” PLoS ONE2(4), e388 (2007). [CrossRef] [PubMed]
  42. P. C. Seitz, E. H. Stelzer, and A. Rohrbach, “Interferometric tracking of optically trapped probes behind structured surfaces: A phase correction method,” Appl. Opt.45(28), 7309–7315 (2006). [CrossRef] [PubMed]
  43. M. O’Toole and K. E. Miller, “The role of stretching in slow axonal transport,” Biophys. J.100(2), 351–360 (2011). [CrossRef] [PubMed]
  44. V. Vogel and M. P. Sheetz, “Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways,” Curr. Opin. Cell Biol.21(1), 38–46 (2009). [CrossRef] [PubMed]
  45. G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell128(3), 561–575 (2007). [CrossRef] [PubMed]
  46. K. E. Kubow, E. Klotzsch, M. L. Smith, D. Gourdon, W. C. Little, and V. Vogel, “Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells,” Integr. Biol.1(11-12), 635–648 (2009). [CrossRef] [PubMed]
  47. O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J.29(6), 1055–1068 (2010). [CrossRef] [PubMed]
  48. J. Fouchard, D. Mitrossilis, and A. Asnacios, “Acto-myosin based response to stiffness and rigidity sensing,” Cell Adhes. Migr.5(1), 16–19 (2011). [CrossRef] [PubMed]
  49. J. Rajagopalan, A. Tofangchi, and M. T. A. Saif, “Drosophila neurons actively regulate axonal tension in vivo,” Biophys. J.99(10), 3208–3215 (2010). [CrossRef] [PubMed]
  50. M. Allioux-Guérin, D. Icard-Arcizet, C. Durieux, S. Hénon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, “Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers,” Biophys. J.96(1), 238–247 (2009). [CrossRef] [PubMed]
  51. D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, and A. Asnacios, “Real-time single-cell response to stiffness,” Proc. Natl. Acad. Sci. U.S.A.107(38), 16518–16523 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited