OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 1 — Jan. 4, 2012

Photo-physiological variability in phytoplankton chlorophyll fluorescence and assessment of chlorophyll concentration

Alexander Chekalyuk and Mark Hafez  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22643-22658 (2011)
http://dx.doi.org/10.1364/OE.19.022643


View Full Text Article

Enhanced HTML    Acrobat PDF (1383 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photo-physiological variability of in vivo chlorophyll fluorescence (CF) per unit of chlorophyll concentration (CC) is analyzed using a biophysical model to improve the accuracy of CC assessments. Field measurements of CF and photosystem II (PSII) photochemical yield (PY) with the Advanced Laser Fluorometer (ALF) in the Delaware and Chesapeake Bays are analyzed vs. high-performance liquid chromatography (HPLC) CC retrievals. It is shown that isolation from ambient light, PSII saturating excitation, optimized phytoplankton exposure to excitation, and phytoplankton dark adaptation may provide accurate in vivo CC fluorescence measurements (R2 = 0.90–0.95 vs. HPLC retrievals). For in situ or flow-through measurements that do not allow for dark adaptation, concurrent PY measurements can be used to adjust for CF non-photochemical quenching (NPQ) and improve the accuracy of CC fluorescence assessments. Field evaluation has shown the NPQ-invariance of CF/PY and CF(PY−1-1) parameters and their high correlation with HPLC CC retrievals (R2 = 0.74–0.96), while the NPQ-affected CF measurements correlated poorly with CC (R2 = −0.22).

© 2011 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(140.0140) Lasers and laser optics : Lasers and laser optics
(300.0300) Spectroscopy : Spectroscopy
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 1, 2011
Revised Manuscript: October 7, 2011
Manuscript Accepted: October 8, 2011
Published: October 25, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Alexander Chekalyuk and Mark Hafez, "Photo-physiological variability in phytoplankton chlorophyll fluorescence and assessment of chlorophyll concentration," Opt. Express 19, 22643-22658 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-23-22643


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. C. Papageorgiou and Govindjee (Eds.), Chlorophyll a Fluorescence: A Signature of Photosynthetsis, Advances in Photosynthesis and Respiration (Springer, Dordrecht, 2004).
  2. T. J. Cowles, J. N. Moum, R. A. Desiderio, and S. M. Angel, “In situ monitoring of ocean chlorophyll via laser-induced fluorescence backscattering through an optical fiber,” Appl. Opt.28(3), 595–600 (1989). [CrossRef] [PubMed]
  3. E. J. D'Sa, S. E. Lohrenz, J. H. Churchill, V. L. Asper, J. L. Largier, and A. J. Williams, “Chloropigment distribution and transport on the inner shelf off Duck, North Carolina,” J. Geophys. Res.- Oceans106(C6), 11581–11596 (2001). [CrossRef]
  4. C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: Documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001). [CrossRef]
  5. Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in-situ,” Limnol. Oceanogr.38(8), 1646–1665 (1993). [CrossRef]
  6. M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr.53(5_part_2), 2169–2179 (2008). [CrossRef]
  7. S. Babichenko, S. Kaitala, A. Leeben, L. Poryvkina, and J. Seppala, “Phytoplankton pigments and dissolved organic matter distribution in the Gulf of Riga,” J. Mar. Syst.23(1-3), 69–82 (1999). [CrossRef]
  8. A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, and J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynth. Res.66(1/2), 45–56 (2000). [CrossRef] [PubMed]
  9. J. H. Churnside and P. L. Donaghay, “Thin scattering layers observed by airborne lidar,” ICES J. Mar. Sci.66(4), 778–789 (2009). [CrossRef]
  10. F. E. Hoge and R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt.20(18), 3197–3205 (1981). [CrossRef] [PubMed]
  11. M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res.72(1), 39–53 (2002). [CrossRef] [PubMed]
  12. A. Chekalyuk and M. Hafez, “Advanced laser fluorometry of natural aquatic environments,” Limnol. Oceanogr. Methods6, 591–609 (2008). [CrossRef]
  13. T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission-spectra,” Mar. Biol.115(2), 217–222 (1993). [CrossRef]
  14. G. Parésys, C. Rigart, B. Rousseau, A. W. M. Wong, F. Fan, J. P. Barbier, and J. Lavaud, “Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria,” Water Res.39(5), 911–921 (2005). [CrossRef] [PubMed]
  15. C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence,” Limnol. Oceanogr. Methods8, 695–708 (2010). [CrossRef]
  16. T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010). [CrossRef] [PubMed]
  17. T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008). [CrossRef]
  18. A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1/2), 33–44 (2000). [CrossRef] [PubMed]
  19. P. Falkowski and D. A. Kiefer, “Chlorophyll-a fluorescence in phytoplankton - relationship to photosynthesis and biomass,” J. Plankton Res.7(5), 715–731 (1985). [CrossRef]
  20. P. G. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol.22(2), 341–355 (1995). [CrossRef]
  21. T. Fujiki, T. Hosaka, H. Kimoto, T. Ishimaru, and T. Saino, “In situ observation of phytoplankton productivity by an underwater profiling buoy system: use of fast repetition rate fluorometry,” Mar. Ecol. Prog. Ser.353, 81–88 (2008). [CrossRef]
  22. M. Y. Gorbunov, P. G. Falkowski, and Z. S. Kolber, “Measurement of photosynthetic parameters in benthic organisms in situ using a SCUBA-based fast repetition rate fluorometer,” Limnol. Oceanogr.45(1), 242–245 (2000). [CrossRef]
  23. Z. Kolber, K. D. Wyman, and P. G. Falkowski, “Natural variability in photosynthetic energy-conversion efficiency - afield-study in the Gulf of Maine,” Limnol. Oceanogr.35(1), 72–79 (1990). [CrossRef]
  24. Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in-situ,” Limnol. Oceanogr.38(8), 1646–1665 (1993). [CrossRef]
  25. R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996). [CrossRef]
  26. R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999). [CrossRef] [PubMed]
  27. R. J. Olson, H. M. Sosik, A. M. Chekalyuk, and A. Shalapyonok, “Effects of iron enrichment on phytoplankton in the Southern Ocean during late summer: active fluorescence and flow cytometric analyses,” Deep Sea Res. Part II Top. Stud. Oceanogr.47(15-16), 3181–3200 (2000). [CrossRef]
  28. M. P. Raateoja, “Fast repetition rate fluorometry (FRRF) measuring phytoplankton productivity: a case study at the entrance to the Gulf of Finland, Baltic Sea,” Boreal Environ. Res.9, 263–276 (2004).
  29. Y. Huot, M. Babin, F. Bruyant, C. Grob, M. S. Twardowski, and H. Claustre, “Relationship between photosynthetic parameters and different proxies of phytoplankton biomass in the subtropical ocean,” Biogeosciences4(5), 853–868 (2007). [CrossRef]
  30. M. Kruskopf and K. J. Flynn, “Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate,” New Phytol.169(3), 525–536 (2006). [CrossRef] [PubMed]
  31. O. C. Swertz, F. Colijn, H. W. Hofstraat, and B. A. Althuis, “Temperature, salinity, and fluorescence in Southern North Sea: high-resolution data sampled from a ferry,” Environ. Manage.23(4), 527–538 (1999). [CrossRef] [PubMed]
  32. C. D. Wirick, “Exchange of phytoplankton across the continental shelf-slope boundary of the Middle Atlantic Bight during spring-1988,” Deep Sea Res. Part II Top. Stud. Oceanogr.41(2-3), 391–410 (1994). [CrossRef]
  33. A. E. Alpine and J. E. Cloern, “Differences in in vivo fluorescence yield between three phytoplankton size classes,” J. Plankton Res.7(3), 381–390 (1985). [CrossRef]
  34. J. J. Cullen, “The deep chlorophyll maximum - comparing vertical profiles of chlorophyll-a,” Can. J. Fish. Aquat. Sci.39(5), 791–803 (1982). [CrossRef]
  35. J. J. Cullen and M. R. Lewis, “Biological processes and optical measurements near the sea surface: Some issues relevant to remote sensing,” J. Geophys. Res. - Oceans100(C7), 13255–13266 (1995). [CrossRef]
  36. M. E. Loftus and H. H. Seliger, “Some limitations of the in vivo fluorescence technique,” Chesap. Sci.16(2), 79–92 (1975). [CrossRef]
  37. T. Jakob, U. Schreiber, V. Kirchesch, U. Langner, and C. Wilhelm, “Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits,” Photosynth. Res.83(3), 343–361 (2005). [CrossRef] [PubMed]
  38. Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” BBA.- Bioenergetics1367(1-3), 88–106 (1998). [CrossRef]
  39. G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis - the basics,” Annu. Rev. Plant Physiol.42(1), 313–349 (1991). [CrossRef]
  40. T. R. Jacobsen, “A quantitative method for the separation of chlorophyll a and b from phytoplankton pigments by HPLC,” Mar. Sci. Comm.4, 33–47 (1978).
  41. C. J. Lorenzen, “Determination of chlorophyll and pheo-pigments - spectrophotometric equations,” Limnol. Oceanogr.12(2), 343–346 (1967). [CrossRef]
  42. O. C. J. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, and J. D. H. Strickland, “Fluorometric determination of chlorophyll,” J. Cons. Perm. Int. Explor. Mer.30, 3–15 (1965).
  43. Govindje, “63 years since Kautsky - chlorophyll-a fluorescence,” Aust. J. Plant Physiol.22(2), 131–160 (1995). [CrossRef]
  44. G. C. Papageorgiou, M. Tsimilli-Michael, and K. Stamatakis, “The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint,” Photosynth. Res.94(2-3), 275–290 (2007). [CrossRef] [PubMed]
  45. J. C. Kromkamp and R. M. Forster, “The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology,” Eur. J. Phycol.38(2), 103–112 (2003). [CrossRef]
  46. S. I. Heaney, “Some observations on use of in vivo fluorescence technique to determine chlorophyll-a in natural-populations and cultures of freshwater phytoplankton,” Freshw. Biol.8(2), 115–126 (1978). [CrossRef]
  47. A. Stirbet and Govindjee, “On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient,” J. Photochem. Photobiol. B104(1-2), 236–257 (2011). [CrossRef] [PubMed]
  48. S. T. Sweet and N. L. Guinasso, “Effects of flow-rate on fluorescence in vivo during continuous measurements on Gulf of Mexico surface-water,” Limnol. Oceanogr.29(2), 397–401 (1984). [CrossRef]
  49. R. Röttgers, “Comparison of different variable chlorophyll a fluorescence techniques to determine photosynthetic parameters of natural phytoplankton,” Deep Sea Res. Part I Oceanogr. Res. Pap.54(3), 437–451 (2007). [CrossRef]
  50. A. M. Chekalyuk, Lamont Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez are preparing a manuscript to be called “Laser fluorescence phytoplankton analysis across a frontal zone in the California Current Ecosystem.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 3 Fig. 1 Fig. 2
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited