OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 1 — Jan. 4, 2012

On-chip modulation of evanescent illumination and live-cell imaging with polymer waveguides

Björn Agnarsson, Asta B. Jonsdottir, Nina B. Arnfinnsdottir, and Kristjan Leosson  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 22929-22935 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (905 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Imaging of live cells was carried out using evanescent-wave excitation on a polymer waveguide chip. Integrated waveguide-based interferometric light modulators were fabricated in order to demonstrate on-chip control of excitation light, e.g., for time-lapse fluorescence microscopy. When combined with a sensitive high-resolution imaging system, the integrated waveguide-excitation platform provides an ideal method of near-surface studies of live cells, where photobleaching and/or phototoxicity effects are of critical concern.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(180.2520) Microscopy : Fluorescence microscopy
(230.7390) Optical devices : Waveguides, planar
(250.5460) Optoelectronics : Polymer waveguides
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 2, 2011
Revised Manuscript: September 30, 2011
Manuscript Accepted: October 11, 2011
Published: October 27, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Björn Agnarsson, Asta B. Jonsdottir, Nina B. Arnfinnsdottir, and Kristjan Leosson, "On-chip modulation of evanescent illumination and live-cell imaging with polymer waveguides," Opt. Express 19, 22929-22935 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, “Live-cell microscopy - tips and tools,” J. Cell Sci. 122(6), 753–767 (2009). [CrossRef] [PubMed]
  2. D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300(5616), 82–86 (2003). [CrossRef] [PubMed]
  3. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  4. D. I. Pattison and M. J. Davies, “Actions of ultraviolet light on cellular structures,” EXS 96, 131–157 (2006). [CrossRef] [PubMed]
  5. R. A. Hoebe, H. T. Van der Voort, J. Stap, C. J. Van Noorden, and E. M. Manders, “Quantitative determination of the reduction of phototoxicity and photobleaching by controlled light exposure microscopy,” J. Microsc. 231(1), 9–20 (2008). [CrossRef] [PubMed]
  6. D. M. Benson, J. Bryan, A. L. Plant, A. M. Gotto, and L. C. Smith, “Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells,” J. Cell Biol. 100(4), 1309–1323 (1985). [CrossRef] [PubMed]
  7. H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol. 16(1), 13–18 (2005). [CrossRef] [PubMed]
  8. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001). [CrossRef] [PubMed]
  9. C. Joselevitch and D. Zenisek, “Imaging Exocytosis in Retinal Bipolar Cells with TIRF Microscopy,” (2009) http://www.jove.com/video/1305/imaging-exocytosis-in-retinal-bipolar-cells-with-tirf-microscopy .
  10. A. Hassanzadeh and S. Mittler, “Waveguide evanescent field fluorescence microscopy: high contrast imaging of a domain forming mixed lipid Langmuir-Blodgett monolayer mimicking lung surfactant,” J. Biomed. Opt. 16(4), 046022 (2011). [CrossRef] [PubMed]
  11. H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006). [CrossRef] [PubMed]
  12. R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005). [CrossRef]
  13. R. Horváth, R. L. Lindvold, and N. B. Larsen, “Reverse symmetry waveguides: theory and fabrication,” Appl. Phys. B 74(4-5), 383–393 (2002). [CrossRef]
  14. R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron. 24(4), 799–810 (2008). [CrossRef] [PubMed]
  15. J. J. Ramsden and R. Horvath, “Optical biosensors for cell adhesion,” J. Recept. Signal Transduct. Res. 29(3-4), 211–223 (2009). [CrossRef] [PubMed]
  16. B. Agnarsson, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Evanescent-wave fluorescence microscopy using symmetric planar waveguides,” Opt. Express 17(7), 5075–5082 (2009). [CrossRef] [PubMed]
  17. B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87(1), 56–61 (2010). [CrossRef]
  18. J. Halldorsson, N. B. Arnfinnsdottir, A. B. Jonsdottir, B. Agnarsson, and K. Leosson, “High index contrast polymer waveguide platform for integrated biophotonics,” Opt. Express 18(15), 16217–16226 (2010). [CrossRef] [PubMed]
  19. Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006). [CrossRef]
  20. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003). [CrossRef]
  21. W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sensor. Actuat Biol. Chem. 29, 37–50 (1995).
  22. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D. X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17(13), 10457–10465 (2009). [CrossRef] [PubMed]
  23. B. Maisenholder, H. Zappe, R. Kunz, P. Riel, M. Moser, and J. Edlinger, “A GaAs/AlGaAs-based refracto-meter platform for integrated optical sensing applications,” Sensor. Actuat, Biol. Chem. 39, 324–329 (1997).
  24. C. Vieu, F. Carcenac, A. Pepin, and Y. Chen, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1-4), 111–117 (2000). [CrossRef]
  25. G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011). [CrossRef]
  26. T. Rosenzveig, P. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys., A Mater. Sci. Process. 100(2), 341–346 (2010). [CrossRef]
  27. J. Kirchner, Z. Kam, G. Tzur, A. D. Bershadsky, and B. Geiger, “Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption,” J. Cell Sci. 116(6), 975–986 (2003). [CrossRef] [PubMed]
  28. E. Zamir and B. Geiger, “Molecular complexity and dynamics of cell-matrix adhesions,” J. Cell Sci. 114(Pt 20), 3583–3590 (2001). [PubMed]
  29. G. Carpenter and S. Cohen, “Epidermal growth factor,” J. Biol. Chem. 265(14), 7709–7712 (1990). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

Supplementary Material

» Media 1: MOV (194 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited