OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 1 — Jan. 4, 2012

Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells

Qiugu Wang, Chaojun Tang, Jing Chen, Peng Zhan, and Zhenlin Wang  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 23889-23900 (2011)
http://dx.doi.org/10.1364/OE.19.023889


View Full Text Article

Enhanced HTML    Acrobat PDF (3525 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically study the effect of the symmetry breaking on surface plasmon (SP) modes in two-dimensional dense arrays of truncated metal nanoshells (nanocups), by investigating light transmission through the arrays. We show that localized spherelike and voidlike Mie SP modes, and delocalized Bragg-type SP modes in complete nanoshell arrays become progressively weak and finally disappear when the opening angle of nanocups is increased to tens of degrees. Under higher degree of symmetry breaking, however, the coupling between spherelike and voidlike SP modes leads to an enhancement of SP resonances even though these modes are weakly excited, due to the large optical cross section of voidlike modes. Energy variations of the hybridized mode versus the opening angle are well predicted using a plasmon standing wave model. Furthermore, disappeared Bragg-type SP modes could be re as a result of near-field coupling via hot spots around the rims of nanocups.

© 2011 OSA

OCIS Codes
(000.2700) General : General science
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 8, 2011
Revised Manuscript: October 9, 2011
Manuscript Accepted: October 20, 2011
Published: November 9, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Qiugu Wang, Chaojun Tang, Jing Chen, Peng Zhan, and Zhenlin Wang, "Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells," Opt. Express 19, 23889-23900 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-24-23889


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  2. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998). [CrossRef]
  3. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  4. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005). [CrossRef] [PubMed]
  5. A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009). [CrossRef] [PubMed]
  6. S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett.87(17), 176801 (2001). [CrossRef] [PubMed]
  7. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett.95(11), 116802 (2005). [CrossRef] [PubMed]
  8. R. M. Cole, Y. Sugawara, J. J. Baumberg, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Easily coupled whispering gallery plasmons in dielectric nanospheres embedded in gold films,” Phys. Rev. Lett.97(13), 137401 (2006). [CrossRef] [PubMed]
  9. T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Radiative decay of plasmons in a metallic nanoshell,” Phys. Rev. B69(15), 155402 (2004). [CrossRef]
  10. J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys.103(12), 123105 (2008). [CrossRef]
  11. Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97(26), 266808 (2006). [CrossRef] [PubMed]
  12. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008). [CrossRef]
  13. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling Fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405R (2007). [CrossRef]
  14. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  15. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006). [CrossRef] [PubMed]
  16. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: Optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008). [CrossRef]
  17. M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology18(23), 235704 (2007). [CrossRef]
  18. J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17(26), 23765–23771 (2009). [CrossRef] [PubMed]
  19. J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal “nanocaps” and their red-shifted optical absorption spectra,” Adv. Mater. (Deerfield Beach Fla.)17(10), 1276–1281 (2005). [CrossRef]
  20. P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.)18(12), 1612–1616 (2006). [CrossRef]
  21. A. I. Maaroof, M. B. Cortie, N. Harris, and L. Wieczorek, “Mie and Bragg plasmons in subwavelength silver semi-shells,” Small4(12), 2292–2299 (2008). [CrossRef] [PubMed]
  22. J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir25(3), 1822–1827 (2009). [CrossRef] [PubMed]
  23. J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C113(8), 3110–3115 (2009). [CrossRef]
  24. J. Ye, N. Verellen, W. Van Roy, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Plasmonic modes of metallic semishells in a polymer film,” ACS Nano4(3), 1457–1464 (2010). [CrossRef] [PubMed]
  25. J. Ye, C. Chen, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Strong location dependent surface enhanced Raman scattering on individual gold semishell and nanobowl particles,” Phys. Chem. Chem. Phys.12(37), 11222–11224 (2010). [CrossRef] [PubMed]
  26. Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express18(4), 3546–3555 (2010). [CrossRef] [PubMed]
  27. Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett.96(5), 051904 (2010). [CrossRef]
  28. N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5(9), 7254–7262 (2011). [CrossRef] [PubMed]
  29. P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano5(9), 6774–6778 (2011). [CrossRef] [PubMed]
  30. R. M. Cole, J. J. Baumberg, F. J. García de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding plasmons in nanoscale voids,” Nano Lett.7(7), 2094–2100 (2007). [CrossRef]
  31. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004). [CrossRef] [PubMed]
  32. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006). [CrossRef] [PubMed]
  33. S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett.93(10), 101113 (2008). [CrossRef]
  34. Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett.101(8), 087401 (2008). [CrossRef] [PubMed]
  35. G. Sun and C. T. Chan, “Frequency-selective absorption characteristics of a metal surface with embedded dielectric microspheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(3 ), 036613 (2006). [CrossRef] [PubMed]
  36. T. V. Teperik, V. V. Popov, F. J. García de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. E. Abdelsalem, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express14(25), 11964–11971 (2006). [CrossRef] [PubMed]
  37. Z. Chen, P. Zhan, Z. L. Wang, J. H. Zhang, W. Y. Zhang, N. B. Ming, C. T. Chan, and P. Sheng, “Two- and three-dimensional ordered structures of hollow silver spheres prepared by colloidal crystal templating,” Adv. Mater. (Deerfield Beach Fla.)16(5), 417–422 (2004). [CrossRef]
  38. B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B77(3), 035440 (2008). [CrossRef]
  39. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008). [CrossRef] [PubMed]
  40. C. J. Tang, Z. L. Wang, W. Y. Zhang, S. N. Zhu, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B80(16), 165401 (2009). [CrossRef]
  41. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  42. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998). [CrossRef]
  43. T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B74(24), 245415 (2006). [CrossRef]
  44. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007). [CrossRef]
  45. R. W. Wood, “Remarkable spectrum from a diffraction grating,” Philos. Mag.4, 396–402 (1902).
  46. S. Riikonen, I. Romero, and F. J. García de Abajo, “Plasmon tunability in metallodielectric metamaterials,” Phys. Rev. B71(23), 235104 (2005). [CrossRef]
  47. C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys. Condens. Matter20(7), 075232 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited