OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 1 — Jan. 4, 2012

Holographic aberration correction: optimising the stiffness of an optical trap deep in the sample

Maria Dienerowitz, Graham Gibson, Richard Bowman, and Miles Padgett  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24589-24595 (2011)
http://dx.doi.org/10.1364/OE.19.024589


View Full Text Article

Enhanced HTML    Acrobat PDF (2423 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the effects of 1st order spherical aberration and defocus upon the stiffness of an optical trap tens of μm into the sample. We control both these aberrations with a spatial light modulator. The key to maintain optimum trap stiffness over a range of depths is a specific non-trivial combination of defocus and axial objective position. This optimisation increases the trap stiffness by up to a factor of 3 and allows trapping of 1μm polystyrene beads up to 50μm deep in the sample.

© 2011 OSA

OCIS Codes
(090.1000) Holography : Aberration compensation
(140.7010) Lasers and laser optics : Laser trapping
(230.6120) Optical devices : Spatial light modulators
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: August 15, 2011
Revised Manuscript: October 25, 2011
Manuscript Accepted: October 27, 2011
Published: November 16, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Maria Dienerowitz, Graham Gibson, Richard Bowman, and Miles Padgett, "Holographic aberration correction: optimising the stiffness of an optical trap deep in the sample," Opt. Express 19, 24589-24595 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-24-24589


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Reicherter, T. Haist, E. Wagemann, and H. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett.24, 608–610 (1999). [CrossRef]
  2. J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207, 169–175 (2002). [CrossRef]
  3. M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11, 1196–1205 (2011). [CrossRef] [PubMed]
  4. K. Wulff, D. Cole, R. Clark, R. Di Leonardo, J. Leach, J. Cooper, G. Gibson, and M. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express14, 4170–4175 (2006). [CrossRef] [PubMed]
  5. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express15, 5801–5808 (2007). [CrossRef] [PubMed]
  6. R. Bowman, A. Wright, and M. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. bf12, 124004 (2010). [CrossRef]
  7. I. Vellekoop and A. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32, 2309–2311 (2007). [CrossRef] [PubMed]
  8. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon.4, 388–394 (2010). [CrossRef]
  9. E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun.236, 145–150 (2004). [CrossRef]
  10. G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt.51, 409–414 (2004). [CrossRef]
  11. S. Reihani, M. Charsooghi, H. Khalesifard, and R. Golestanian, “Efficient in-depth trapping with an oil-immersion objective lens,” Opt. Lett.31, 766–768 (2006). [CrossRef] [PubMed]
  12. S. Reihani and L. Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett.321998–2000 (2007). [CrossRef] [PubMed]
  13. C. Sheppard and M. Gu “Aberration compensation in confocal microscopy,” Appl. Opt.30, 3563–3568 (1991). [CrossRef] [PubMed]
  14. Y. Huang, J. Wan, M. C. Cheng, Z. Zhang, S. M. Jhiang, and C. H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum.80, 063107 (2009). [CrossRef] [PubMed]
  15. R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: Control of trap shape,” Opt. Express18, 11785–11790 (2010). [CrossRef] [PubMed]
  16. G. Gibson, J. Leach, S. Keen, A. Wright, and M. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express16, 14561–14570 (2008). [CrossRef] [PubMed]
  17. A. Rohrbach and E. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt.41, 2494–2507 (2002). [CrossRef] [PubMed]
  18. P. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt.45, 2159–2168 (1998). [CrossRef]
  19. C. Sheppard and C. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik87, 34–38 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited