OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Generation of broadband longitudinal fields for applications to ultrafast tip-enhanced near-field microscopy

Kentaro Furusawa, Norihiko Hayazawa, Takayuki Okamoto, Takuo Tanaka, and Satoshi Kawata  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25328-25336 (2011)
http://dx.doi.org/10.1364/OE.19.025328


View Full Text Article

Enhanced HTML    Acrobat PDF (1510 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the generation of broadband longitudinal fields within a tightly focused spot by using a segmented wave plate combined with a phase tailored broadband laser pulse. Their field distribution is characterized by observing the scattered light from a gold-coated glass fiber tip as it is scanned across the focused beam spot. It is observed that efficient coupling to the tip-enhanced field can be achieved over a broad bandwidth of more than 100nm, resulting in a positive contrast at the centre of the focus in the spectrally resolved Rayleigh scattering image. Temporal characteristics of the nonlinear excitation at the tip apex observed by using the fringe resolved autocorrelation technique indicate the possibilities of ultrafast spectroscopy by utilizing the tip-enhanced longitudinal fields.

© 2011 OSA

OCIS Codes
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Microscopy

History
Original Manuscript: October 6, 2011
Revised Manuscript: November 7, 2011
Manuscript Accepted: November 8, 2011
Published: November 28, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Kentaro Furusawa, Norihiko Hayazawa, Takayuki Okamoto, Takuo Tanaka, and Satoshi Kawata, "Generation of broadband longitudinal fields for applications to ultrafast tip-enhanced near-field microscopy," Opt. Express 19, 25328-25336 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-25-25328


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Zayats and D. Richards, eds., “Nano-optics and near-field optical microscopy” (Artech House, Boston, 2008)
  2. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett.19(3), 159–161 (1994). [CrossRef] [PubMed]
  3. R. Bachelot, P. Gleyzes, and A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett.20(18), 1924–1926 (1995). [CrossRef] [PubMed]
  4. J. Jersch, F. Demming, L. J. Hildenhagen, and K. Dickmann, “Field enhancement of optical radiation in the nearfield of scanning probe microscope tips,” Appl. Phys., A Mater. Sci. Process.66(1), 29–34 (1998). [CrossRef]
  5. U. Ch. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett.62(4), 458–461 (1989). [CrossRef] [PubMed]
  6. S. Kawata, ed., “Near-field optics and surface plasmon polaritons,” (Springer-Verlag, Berlin, 2001)
  7. S. Kawata and V. M. Shalaev, eds., “Tip Enhancement,” (Elsevier, Amsterdam, 2007)
  8. N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys.125(24), 244706 (2006). [CrossRef] [PubMed]
  9. W. Zhang, B. S. Yeo, T. Schmidt, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C111(4), 1733–1738 (2007). [CrossRef]
  10. J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett.100(23), 236101 (2008). [CrossRef] [PubMed]
  11. C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B73(19), 193406 (2006). [CrossRef]
  12. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett.92(22), 220801 (2004). [CrossRef] [PubMed]
  13. N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-stokes Raman scattering by a metallic nano-structure for a high resolution vibrational microscopy,” J. Appl. Phys.95(5), 2676–2681 (2004). [CrossRef]
  14. S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett.9(11), 3801–3804 (2009). [CrossRef] [PubMed]
  15. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010). [CrossRef] [PubMed]
  16. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004). [CrossRef]
  17. C. Hoppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett.8(2), 642–646 (2008). [CrossRef] [PubMed]
  18. L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc.40(10), 1420–1426 (2009). [CrossRef]
  19. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett.66(14), 1842–1844 (1995). [CrossRef]
  20. D. Kobayashi, S. Kawai, and H. Kawakatsu, “New FM detection techniques for scanning probe microscopy,” Jpn. J. Appl. Phys.43(7B), 4566–4570 (2004). [CrossRef]
  21. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett.29(7), 775–777 (2004). [CrossRef] [PubMed]
  22. D. Pestov, V. V. Lozovoy, and M. Dantus, “Single-beam shaper-based pulse characterization and compression using MIIPS sonogram,” Opt. Lett.35(9), 1422–1424 (2010). [CrossRef] [PubMed]
  23. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett.82(25), 4596–4598 (2003). [CrossRef]
  24. N. Hayazawa, K. Furusawa, A. Taguchi, and S. Kawata, “One-photon and two-photon excited fluorescnece microscopies based on polarization-control: applications to tip-enhanced microscopy,” J. Appl. Phys.106(11), 113103 (2009). [CrossRef]
  25. B. Lamprescht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B68(3), 419–423 (1999). [CrossRef]
  26. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003). [CrossRef]
  27. B. Lamprescht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecnd-resolution third-harmonic generation,” Phys. Rev. Lett.83(21), 4421–4424 (1999). [CrossRef]
  28. N. Hayazawa, K. Furusawa, A. Taguchi, S. Kawata, and H. Abe, “Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip,” Appl. Phys. Lett.94(19), 193112 (2009). [CrossRef]
  29. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.31(4), 480–482 (2006). [CrossRef] [PubMed]
  30. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited