OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics

Pasquale Memmolo, Andrea Finizio, Melania Paturzo, Lisa Miccio, and Pietro Ferraro  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25833-25842 (2011)
http://dx.doi.org/10.1364/OE.19.025833


View Full Text Article

Enhanced HTML    Acrobat PDF (1229 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a compact twin-beam interferometer that can be adopted as a flexible diagnostic tool in microfluidic platforms with twofold functionality. The novel configuration allows 3D tracking of micro-particles and, at same time, can simultaneously furnish Quantitative Phase-contrast maps of tracked micro-objects by interference microscopy, without changing the configuration. Experimental demonstration is given on for in vitro cells in a microfluidic environment.

© 2011 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(180.3170) Microscopy : Interference microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(350.4990) Other areas of optics : Particles
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: September 8, 2011
Revised Manuscript: October 19, 2011
Manuscript Accepted: October 20, 2011
Published: December 2, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Pasquale Memmolo, Andrea Finizio, Melania Paturzo, Lisa Miccio, and Pietro Ferraro, "Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics," Opt. Express 19, 25833-25842 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-25-25833


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006). [CrossRef] [PubMed]
  2. J. W. Hong and S. R. Quake, “Integrated nanoliter systems,” Nat. Biotechnol.21(10), 1179–1183 (2003). [CrossRef] [PubMed]
  3. F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt.11(5), 054032 (2006). [CrossRef] [PubMed]
  4. B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett.33(7), 744–746 (2008). [CrossRef] [PubMed]
  5. W. M. Ash and M. K. Kim, “Digital holography of total internal reflection,” Opt. Express16(13), 9811–9820 (2008). [CrossRef] [PubMed]
  6. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt.16(2), 026014 (2011). [CrossRef] [PubMed]
  7. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik114(9), 419–423 (2007).
  8. G. Coppola, G. Di Caprio, M. Gioffré, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizio, and P. Ferraro, “Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction,” Opt. Lett.35(20), 3390–3392 (2010). [CrossRef] [PubMed]
  9. C. Song, T.-D. Luong, T. F. Kong, N.-T. Nguyen, and A. K. Asundi, “Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens,” Opt. Lett.36(5), 657–659 (2011). [CrossRef] [PubMed]
  10. M. Antkowiak, M. L. Torres-Mapa, K. Dholakia, and F. J. Gunn-Moore, “Quantitative phase study of the dynamic cellular response in femtosecond laser photoporation,” Biomed. Opt. Express1(2), 414–424 (2010). [CrossRef] [PubMed]
  11. W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express18(11), 11181–11191 (2010). [CrossRef] [PubMed]
  12. N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express1(2), 706–719 (2010). [CrossRef] [PubMed]
  13. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011). [CrossRef] [PubMed]
  14. L. Friedrich and A. Rohrbach, “Improved interferometric tracking of trapped particles using two frequency-detuned beams,” Opt. Lett.35(11), 1920–1922 (2010). [CrossRef] [PubMed]
  15. M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11(7), 1196–1205 (2011). [CrossRef] [PubMed]
  16. P. Schiro, C. Dubois, and A. Kwok, “Large capture-range of a single-beam gradient optical trap,” Opt. Express11(25), 3485–3489 (2003). [CrossRef] [PubMed]
  17. A. Rohrbach, H. Kress, and E. H. Stelzer, “Three-dimensional tracking of small spheres in focused laser beams: influence of the detection angular aperture,” Opt. Lett.28(6), 411–413 (2003). [CrossRef] [PubMed]
  18. M. D. McMahon, A. J. Berglund, P. Carmichael, J. J. McClelland, and J. A. Liddle, “3D particle trajectories observed by orthogonal tracking microscopy,” ACS Nano3(3), 609–614 (2009). [CrossRef] [PubMed]
  19. E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, “Three-dimensional particle tracking via bifocal imaging,” Nano Lett.7(7), 2043–2045 (2007). [CrossRef] [PubMed]
  20. H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J.67(3), 1291–1300 (1994). [CrossRef] [PubMed]
  21. S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express16(26), 22048–22057 (2008). [CrossRef] [PubMed]
  22. S. Ram, P. Prabhat, E. S. Ward, and R. J. Ober, “Improved single particle localization accuracy with dual objective multifocal plane microscopy,” Opt. Express17(8), 6881–6898 (2009). [CrossRef] [PubMed]
  23. A. J. Berglund, M. D. McMahon, J. J. McClelland, and J. A. Liddle, “Fast, bias-free algorithm for tracking single particles with variable size and shape,” Opt. Express16(18), 14064–14075 (2008). [CrossRef] [PubMed]
  24. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Fresnel particle tracing in three dimensions using diffraction phase microscopy,” Opt. Lett.32(7), 811–813 (2007). [CrossRef] [PubMed]
  25. M. J. Mlodzianoski, M. F. Juette, G. L. Beane, and J. Bewersdorf, “Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy,” Opt. Express17(10), 8264–8277 (2009). [CrossRef] [PubMed]
  26. M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D Holographic Imaging and Trapping for Non-Invasive Cell Identification and Tracking,” J. Disp. Technol.6(10), 490–499 (2010). [CrossRef]
  27. J. A. Dominguez-Caballero, N. Loomis, G. Barbastathis, and J. Milgram, Techniques Based on Digital Multiplexing Holography for Three-Dimensional Object Tracking”, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JThD84.
  28. M.-T. Wei and A. Chiou, “Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants,” Opt. Express13(15), 5798–5806 (2005). [CrossRef] [PubMed]
  29. S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, “Optofluidic Tomography on a Chip,” Appl. Phys. Lett.98(16), 161109 (2011). [CrossRef] [PubMed]
  30. H. Yang, N. Halliwell, and J. Coupland, “Application of the digital shearing method to extract three-component velocity in holographic particle image velocimetry,” Meas. Sci. Technol.15(4), 694–698 (2004). [CrossRef]
  31. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express18(13), 13563–13573 (2010). [CrossRef] [PubMed]
  32. O. Otto, F. Czerwinski, J. L. Gornall, G. Stober, L. B. Oddershede, R. Seidel, and U. F. Keyser, “Real-time particle tracking at 10,000 fps using optical fiber illumination,” Opt. Express18(22), 22722–22733 (2010). [CrossRef] [PubMed]
  33. H. Hajjoul, S. Kocanova, I. Lassadi, K. Bystricky, and A. Bancaud, “Lab-on-Chip for fast 3D particle tracking in living cells,” Lab Chip9(21), 3054–3058 (2009). [CrossRef] [PubMed]
  34. A. J. Berglund, M. D. McMahon, J. J. McClelland, and J. A. Liddle, “Theoretical model of errors in micromirror-based three-dimensional particle tracking,” Opt. Lett.35(11), 1905–1907 (2010). [CrossRef] [PubMed]
  35. D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express19(5), 3835–3842 (2011). [CrossRef] [PubMed]
  36. B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics3(7), 425–431 (2010). [CrossRef] [PubMed]
  37. F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett.36(16), 3079–3081 (2011). [CrossRef] [PubMed]
  38. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Addison - Wesley Longman, Boston 1992).
  39. A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express19(7), 6684–6698 (2011). [CrossRef] [PubMed]
  40. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett.90(4), 041104 (2007). [CrossRef]
  41. E. Allaria, S. Brugioni, S. Denicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun.215(4-6), 257–262 (2003). [CrossRef]
  42. T. Ellenbogen, A. Ganany-Padowicz, and A. Arie, “Nonlinear photonic structures for all-optical deflection,” Opt. Express16(5), 3077–3082 (2008). [CrossRef] [PubMed]
  43. N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett.95(16), 161108 (2009). [CrossRef]
  44. M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett.35(12), 2112–2114 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (393 KB)      QuickTime
» Media 2: AVI (152 KB)      QuickTime
» Media 3: AVI (1150 KB)      QuickTime

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited