OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Efficient apertureless scanning probes using patterned plasmonic surfaces

Youngkyu Lee, Andrea Alu, and John X.J. Zhang  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 25990-25999 (2011)
http://dx.doi.org/10.1364/OE.19.025990


View Full Text Article

Enhanced HTML    Acrobat PDF (4142 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel concept to design apertureless plasmonic probes for near-field scanning optical microscopy (NSOM) with enhanced optical power throughput and near-field enhancement. Specifically, we combine unidirectional surface plasmon polariton (SPP) generation along the tip lateral walls with nanofocusing of SPPs through adiabatic propagation towards an apertureless tip. Three key design parameters are considered: the nanoslit width, the pitch period of nanogrooves for unidirectional plasmonic excitation and the pyramidal geometry of the NSOM probe for SPP focusing. Optimal design parameters are obtained with 2D analysis and two realistic probe geometries with patterned plasmonic surfaces are proposed using the optimized designs. The electromagnetic properties of the designed probes are characterized in the near-field and compared to those of a conventional single-aperture probe with same pyramidal shape. The optimized probes feature FWHM around 150nm, comparable with conventional NSOM designs, but over 3 orders of magnitude larger field enhancement, without degrading its spatial resolution. Our ideas effectively combine the resolution of apertureless probes with throughput levels much larger than those available even in aperture-based devices.

© 2011 OSA

OCIS Codes
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Microscopy

History
Original Manuscript: September 22, 2011
Revised Manuscript: October 15, 2011
Manuscript Accepted: October 17, 2011
Published: December 6, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Youngkyu Lee, Andrea Alu, and John X.J. Zhang, "Efficient apertureless scanning probes using patterned plasmonic surfaces," Opt. Express 19, 25990-25999 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-27-25990


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Hecht and A. R. Ganesan, Optics (Pearson Education, 2001).
  2. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv. Mikros. Anat.9, 413 (1873). [CrossRef]
  3. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991). [CrossRef] [PubMed]
  4. K. Lieberman, S. Harush, A. Lewis, and R. Kopelman, “A light source smaller than the optical wavelength,” Science247(4938), 59–61 (1990). [CrossRef] [PubMed]
  5. A. Lewis and K. Lieberman, “Near-field optical imaging with a non-evanescently excited high-brightness light source of sub-wavelength dimensions,” Nature354(6350), 214–216 (1991). [CrossRef]
  6. R. Bachelot, F. H'dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, J.-P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys.94(3), 2060–2072 (2003). [CrossRef]
  7. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  8. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009). [CrossRef] [PubMed]
  9. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101(10), 104312 (2007). [CrossRef]
  10. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett.10(2), 592–596 (2010). [CrossRef] [PubMed]
  11. Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett.8(9), 3041–3045 (2008). [CrossRef] [PubMed]
  12. Y. Wang, Y. Y. Huang, and X. J. Zhang, “Plasmonic nanograting tip design for high power throughput near-field scanning aperture probe,” Opt. Express18(13), 14004–14011 (2010). [CrossRef] [PubMed]
  13. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005). [CrossRef] [PubMed]
  14. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9(12), 4320–4325 (2009). [CrossRef] [PubMed]
  15. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007). [CrossRef]
  16. H. Kim and B. Lee, “Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination,” Plasmonics4(2), 153–159 (2009). [CrossRef]
  17. S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q.-H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett.94(6), 063115 (2009). [CrossRef]
  18. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett.86(24), 5601–5603 (2001). [CrossRef] [PubMed]
  19. J. Soohoo and G. E. Mevers, “Cavity mode analysis using the fourier transform method,” Proc. IEEE62(12), 1721–1723 (1974). [CrossRef]
  20. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, New York, 1980).
  21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  22. S. Astilean, Ph. Lalanneb, and M. Palamarua, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun.175(4-6), 265–273 (2000). [CrossRef]
  23. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).
  24. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944). [CrossRef]
  25. J. S. Hyun, J. S. Moon, J. H. Parka, J. W. Kima, Y. D. Kimaand, and J. H. Boo, “Fabrication of near-field optical probes using advanced functional thin films for MEMS and NEMS applications,” Mater. Sci. Eng.149, 292–298 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited