OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Motion-insensitive optical coherence tomography based micro-angiography

Ting-Ta Chi, Cheng-Kuang Lee, Chiung-Ting Wu, Chih-Chung Yang, Meng-Tsan Tsai, and Chun-Ping Chiang  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26117-26131 (2011)
http://dx.doi.org/10.1364/OE.19.026117


View Full Text Article

Enhanced HTML    Acrobat PDF (2926 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An improved image processing procedure for suppressing the phase noise due to a motion artifact acquired during optical coherence tomography scanning and effectively illustrating the blood vessel distribution in a living tissue is demonstrated. This new processing procedure and the widely used procedure for micro-angiography application are based on the selection of high-frequency components in the spatial-frequency spectrum of B-mode scanning (x-space), which are contributed from the image portions of moving objects. However, by switching the processing order between the x-space and k-space, the new processing procedure shows the superior function of effectively suppressing the phase noise due to a motion artifact. After the blood vessel positions are precisely acquired based on the new processing procedure, the projected blood flow speed can be more accurately calibrated based on a previously reported method. The demonstrated new procedure is useful for clinical micro-angiography application, in which a stepping motor of generating motion artifacts is usually used in the scanning probe.

© 2011 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 3, 2011
Revised Manuscript: October 6, 2011
Manuscript Accepted: November 20, 2011
Published: December 7, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Ting-Ta Chi, Cheng-Kuang Lee, Chiung-Ting Wu, Chih-Chung Yang, Meng-Tsan Tsai, and Chun-Ping Chiang, "Motion-insensitive optical coherence tomography based micro-angiography," Opt. Express 19, 26117-26131 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-27-26117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. P. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997). [CrossRef] [PubMed]
  2. J. Zhang and Z. P. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express13(19), 7449–7457 (2005). [CrossRef] [PubMed]
  3. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M.J.C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997). [CrossRef] [PubMed]
  4. Y. Zhao, Z. P. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000). [CrossRef] [PubMed]
  5. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997). [CrossRef] [PubMed]
  6. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009). [CrossRef] [PubMed]
  7. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011). [CrossRef] [PubMed]
  8. Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express2(3), 579–591 (2011). [CrossRef] [PubMed]
  9. F. Jaillon, S. Makita, E. J. Min, B. H. Lee, and Y. Yasuno, “Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography,” Biomed. Opt. Express2(5), 1147–1158 (2011). [CrossRef] [PubMed]
  10. B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res.68(23), 9987–9995 (2008). [CrossRef] [PubMed]
  11. Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express17(5), 4061–4073 (2009). [CrossRef] [PubMed]
  12. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006). [PubMed]
  13. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006). [CrossRef] [PubMed]
  14. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  15. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express17(11), 8926–8940 (2009). [CrossRef] [PubMed]
  16. L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt.15(2), 026011 (2010). [CrossRef] [PubMed]
  17. Z. Zhi, Y. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express2(5), 1059–1068 (2011). [CrossRef] [PubMed]
  18. L. An and R. K. Wang, “Full range complex ultrahigh sensitive optical microangiography,” Opt. Lett.36(6), 831–833 (2011). [CrossRef] [PubMed]
  19. M. T. Tsai, C. K. Lee, H. C. Lee, H. M. Chen, C. P. Chiang, Y. M. Wang, and C. C. Yang, “Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography,” J. Biomed. Opt.14(4), 044028 (2009). [CrossRef] [PubMed]
  20. C. C. Yang, M.-T. Tsai, H.-C. Lee, C.-K. Lee, C.-H. Yu, H.-M. Chen, C.-P. Chiang, C.-C. Chang, Y.-M. Wang, and C. C. Yang, “Effective indicators for diagnosis of oral cancer using optical coherence tomography,” Opt. Express16(20), 15847–15862 (2008). [CrossRef] [PubMed]
  21. R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys.18(9), 1080–1086 (2008). [CrossRef]
  22. J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express18(12), 12065–12075 (2010). [CrossRef] [PubMed]
  23. K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express15(26), 18130–18140 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited