OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

A forward-imaging needle-type OCT probe for image guided stereotactic procedures

Chia-Pin Liang, Jeremiah Wierwille, Thais Moreira, Gary Schwartzbauer, M. Samir Jafri, Cha-Min Tang, and Yu Chen  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26283-26294 (2011)
http://dx.doi.org/10.1364/OE.19.026283


View Full Text Article

Enhanced HTML    Acrobat PDF (1198 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A forward-imaging needle-type optical coherence tomography (OCT) probe with Doppler OCT (DOCT) capability has the potential to solve critical challenges in interventional procedures. A case in point is stereotactic neurosurgery where probes are advanced into the brain based on predetermined coordinates. Laceration of blood vessels in front of the advancing probe is an unavoidable complication with current methods. Moreover, cerebrospinal fluid (CSF) leakage during surgery can shift the brain rendering the predetermined coordinates unreliable. In order to address these challenges, we developed a forward-imaging OCT probe (740 μm O.D.) using a gradient-index (GRIN) rod lens that can provide real-time imaging feedback for avoiding at-risk vessels (8 frames/s with 1024 A-scans per frame for OCT/DOCT dual imaging) and guiding the instrument to specific targets with 12 μm axial resolution (100 frames/s with 160 A-scans per frame for OCT imaging only). The high signal-to-background characteristic of DOCT provides exceptional sensitivity in detecting and quantifying the blood flow within the sheep brain parenchyma in real time. The OCT/DOCT dual imaging also demonstrated its capability to differentiate the vessel type (artery/vein) on rat’s femoral vessels. We also demonstrated in ex vivo human brain that the location of the tip of the OCT probe can be inferred from micro-anatomical landmarks in OCT images. These findings demonstrate the suitability of OCT guidance during stereotactic procedures in the brain and its potential for reducing the risk of cerebral hemorrhage.

© 2011 OSA

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 24, 2011
Revised Manuscript: November 24, 2011
Manuscript Accepted: November 24, 2011
Published: December 8, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Chia-Pin Liang, Jeremiah Wierwille, Thais Moreira, Gary Schwartzbauer, M. Samir Jafri, Cha-Min Tang, and Yu Chen, "A forward-imaging needle-type OCT probe for image guided stereotactic procedures," Opt. Express 19, 26283-26294 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-27-26283


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Colbassani, S. Nishio, K. M. Sweeney, R. A. E. Bakay, and Y. Takei, “CT-assisted stereotactic brain biopsy: value of intraoperative frozen section diagnosis,” J. Neurol. Neurosurg. Psychiatry51(3), 332–341 (1988). [CrossRef] [PubMed]
  2. N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res.155(2), 62–70 (2010). [CrossRef] [PubMed]
  3. A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol.59(3), 459–466 (2006). [CrossRef] [PubMed]
  4. P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann, and A. L. Benabid, “Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease,” N. Engl. J. Med.339(16), 1105–1111 (1998). [CrossRef] [PubMed]
  5. P. A. Starr, “Placement of deep brain stimulators into the subthalamic nucleus or Globus pallidus internus: technical approach,” Stereotact. Funct. Neurosurg.79(3-4), 118–145 (2002). [CrossRef] [PubMed]
  6. P. D. Sawin, P. W. Hitchon, K. A. Follett, and J. C. Torner, “Computed imaging-assisted stereotactic brain biopsy: a risk analysis of 225 consecutive cases,” Surg. Neurol.49(6), 640–649 (1998). [CrossRef] [PubMed]
  7. D. K. Binder, G. Rau, and P. A. Starr, “Hemorrhagic complications of microelectrode-guided deep brain stimulation,” Stereotact. Funct. Neurosurg.80(1-4), 28–31 (2003). [CrossRef] [PubMed]
  8. D. K. Binder, G. M. Rau, and P. A. Starr, “Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders,” Neurosurgery56(4), 722–732, discussion 722–732 (2005). [CrossRef] [PubMed]
  9. M. I. Hariz, “Complications of deep brain stimulation surgery,” Mov. Disord.17(S3Suppl 3), S162–S166 (2002). [CrossRef] [PubMed]
  10. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett.22(21), 1618–1620 (1997). [CrossRef] [PubMed]
  11. A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Snopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, and O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Express1(13), 432–440 (1997). [CrossRef] [PubMed]
  12. Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett.26(24), 1966–1968 (2001). [CrossRef] [PubMed]
  13. Y. Pan, Z. Li, T. Xie, and C. R. Chu, “Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage,” J. Biomed. Opt.8(4), 648–654 (2003). [CrossRef] [PubMed]
  14. T. Xie, H. Xie, G. K. Fedder, and Y. Pan, “Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers,” Appl. Opt.42(31), 6422–6426 (2003). [CrossRef] [PubMed]
  15. J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, “Electrostatic micromachine scanning mirror for optical coherence tomography,” Opt. Lett.28(8), 628–630 (2003). [CrossRef] [PubMed]
  16. A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.10(3), 636–642 (2004). [CrossRef]
  17. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett.29(15), 1763–1765 (2004). [CrossRef] [PubMed]
  18. M. J. Cobb, X. Liu, and X. Li, “Continuous focus tracking for real-time optical coherence tomography,” Opt. Lett.30(13), 1680–1682 (2005). [CrossRef] [PubMed]
  19. Y. Wang, M. Bachman, G. P. Li, S. Guo, B. J. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett.30(1), 53–55 (2005). [CrossRef] [PubMed]
  20. J. M. Zara and P. E. Patterson, “Polyimide amplified piezoelectric scanning mirror for spectral domain optical coherence tomography,” Appl. Phys. Lett.89(26), 263901 (2006). [CrossRef]
  21. Z. Wang, C. S. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt.12(3), 034009 (2007). [CrossRef] [PubMed]
  22. N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. Yang, “Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett.33(7), 657–659 (2008). [CrossRef] [PubMed]
  23. Y. Takahashi, Y. Watanabe, and M. Sato, “High speed spectral domain optical coherence tomography with forward and side-imaging probe,” Jpn. J. Appl. Phys.47(8), 6540–6543 (2008). [CrossRef]
  24. A. D. Aguirre, J. Sawinski, S. W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express18(5), 4222–4239 (2010). [CrossRef] [PubMed]
  25. C. P. Fleming, K. J. Quan, and A. M. Rollins, “Toward guidance of epicardial cardiac radiofrequency ablation therapy using optical coherence tomography,” J. Biomed. Opt.15(4), 041510 (2010). [CrossRef] [PubMed]
  26. M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt.10(5), 051603 (2005). [CrossRef] [PubMed]
  27. M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods176(2), 85–95 (2009). [CrossRef] [PubMed]
  28. J. G. Wu, M. Conry, C. H. Gu, F. Wang, Z. Yaqoob, and C. H. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett.31(9), 1265–1267 (2006). [CrossRef] [PubMed]
  29. S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt.13(2), 020505 (2008). [CrossRef] [PubMed]
  30. T. Xie, G. Liu, K. Kreuter, S. Mahon, H. Colt, D. Mukai, G. M. Peavy, Z. Chen, and M. Brenner, “In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance,” J. Biomed. Opt.14(6), 064045 (2009). [CrossRef] [PubMed]
  31. T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express14(8), 3238–3246 (2006). [CrossRef] [PubMed]
  32. L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt.14(6), 064020 (2009). [CrossRef] [PubMed]
  33. S. G. Guo, L. F. Yu, A. Sepehr, J. Perez, J. P. Su, J. M. Ridgway, D. Vokes, B. J. F. Wong, and Z. P. Chen, “Gradient-index lens rod based probe for office-based optical coherence tomography of the human larynx,” J. Biomed. Opt.14(1), 014017 (2009). [CrossRef] [PubMed]
  34. Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express17(18), 16000–16016 (2009). [CrossRef] [PubMed]
  35. S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett.34(11), 1615–1617 (2009). [CrossRef] [PubMed]
  36. S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010). [CrossRef] [PubMed]
  37. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express11(7), 794–809 (2003). [CrossRef] [PubMed]
  38. N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg.133(2), 419–427 (2007). [CrossRef] [PubMed]
  39. S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods154(1-2), 96–101 (2006). [CrossRef] [PubMed]
  40. D. Morofke, M. C. Kolios, I. A. Vitkin, and V. X. D. Yang, “Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator,” Opt. Lett.32(3), 253–255 (2007). [CrossRef] [PubMed]
  41. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics1(12), 709–716 (2007). [CrossRef]
  42. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011). [CrossRef] [PubMed]
  43. J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett.34(21), 3400–3402 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2733 KB)     
» Media 2: AVI (1637 KB)     
» Media 3: AVI (3604 KB)     
» Media 4: AVI (3711 KB)     
» Media 5: AVI (5012 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited