OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Surface nanoscale axial photonics

M. Sumetsky and J. M. Fini  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26470-26485 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1284 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dense photonic integration promises to revolutionize optical computing and communications. However, efforts towards this goal face unacceptable attenuation of light caused by surface roughness in microscopic devices. Here we address this problem by introducing Surface Nanoscale Axial Photonics (SNAP). The SNAP platform is based on whispering gallery modes circulating around the optical fiber surface and undergoing slow axial propagation readily described by the one-dimensional Schrödinger equation. These modes can be steered with dramatically small nanoscale variation of the fiber radius, which is quite simple to introduce in practice. Extremely low loss of SNAP devices is achieved due to the low surface roughness inherent in a drawn fiber surface. In excellent agreement with the developed theory, we experimentally demonstrate localization of light in quantum wells, halting light by a point source, tunneling through potential barriers, dark states, etc. This demonstration has intriguing potential applications in filtering, switching, slowing light, and sensing.

© 2011 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(230.3990) Optical devices : Micro-optical devices
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Integrated Optics

Original Manuscript: October 24, 2011
Revised Manuscript: November 27, 2011
Manuscript Accepted: November 28, 2011
Published: December 13, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

M. Sumetsky and J. M. Fini, "Surface nanoscale axial photonics," Opt. Express 19, 26470-26485 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  2. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008). [CrossRef]
  3. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008). [CrossRef]
  4. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  5. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  6. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010). [CrossRef]
  7. U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21(6), 065202 (2010). [CrossRef] [PubMed]
  8. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010). [CrossRef]
  9. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010). [CrossRef]
  10. C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Lightwave Technol. 24(12), 4763–4789 (2006). [CrossRef]
  11. M. Sumetsky, “Localization of light in an optical fiber with nanoscale radius variation,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), Postdeadline Paper PDA_8.
  12. L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001–1004 (1910).
  13. A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron. 32(5), 377–400 (2002). [CrossRef]
  14. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  15. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006). [CrossRef]
  16. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  17. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997). [CrossRef] [PubMed]
  18. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. Khan, C. Manolatou, and H. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B 59(24), 15882–15892 (1999). [CrossRef]
  19. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000). [CrossRef] [PubMed]
  20. M. Sumetsky, “Whispering-gallery-bottle microcavities: the three-dimensional etalon,” Opt. Lett. 29(1), 8–10 (2004). [CrossRef] [PubMed]
  21. M. Sumetsky, “Mode localization and the Q-factor of a cylindrical microresonator,” Opt. Lett. 35(14), 2385–2387 (2010). [CrossRef] [PubMed]
  22. M. Sumetsky, “Localization of light on a cone: theoretical evidence and experimental demonstration for an optical fiber,” Opt. Lett. 36(2), 145–147 (2011). [CrossRef] [PubMed]
  23. M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, X. Liu, E. M. Monberg, and T. F. Taunay, “Surface nanoscale axial photonics: robust fabrication of high quality factor microresonators,” Opt. Lett. (to be published).
  24. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, (Pergamon Press, 1977).
  25. A. Q. Tool, L. W. Tilton, and J. B. Saunders, “Changes caused in the refractivity and density of glass by annealing,” J Res Natl Bur Stand (1934) 38(5), 519–526 (1947). [PubMed]
  26. H. Bach and N. Neuroth eds, The Properties of Optical Glass (Springer Verlag, 1995).
  27. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004). [CrossRef]
  28. J. W. Fleming, “Sub glass transition relaxation in optical fibers,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper TuB2.
  29. A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Morphology-dependent photonic circuit elements,” Opt. Lett. 31(9), 1313–1315 (2006). [CrossRef] [PubMed]
  30. T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12(2), 182–183 (2000). [CrossRef]
  31. M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy,” Opt. Lett. 35(23), 4006–4008 (2010). [CrossRef] [PubMed]
  32. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
  33. M. Sumetsky, “Optical microfiber coil delay line,” Opt. Express 17(9), 7196–7205 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited