OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 3 — Mar. 18, 2011

Transport properties of light in a disordered medium composed of two-layered dispersive spheres

Hao Zhang, Heyuan Zhu, and Min Xu  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 2928-2940 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1206 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we perform a coated coherent potential approximation method to investigate the transport properties of disordered media consisting of two-layered dielectric spheres whose constituent layer is dispersive. The admixture of quantum dots to polymers to a certain concentration is used as dispersive medium. We find that the dispersive inclusion of the two-layered spheres influences the transport velocities greatly and a resonant scattering taking place in a dilute disordered medium is smeared out in the corresponding densely disordered medium where the correlation effects of multiple scattering are taken into account.

© 2011 Optical Society of America

OCIS Codes
(260.3160) Physical optics : Interference
(290.1990) Scattering : Diffusion
(350.5500) Other areas of optics : Propagation

ToC Category:

Original Manuscript: October 25, 2010
Revised Manuscript: December 28, 2010
Manuscript Accepted: January 17, 2011
Published: February 1, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Hao Zhang, Heyuan Zhu, and Min Xu, "Transport properties of light in a disordered medium composed of two-layered dispersive spheres," Opt. Express 19, 2928-2940 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. W. Anderson, “The question of classical localization: a theory of white paint?” Philos. Mag. B 52, 505–509 (1985). [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Springer, Heidelberger, 2006), 2nd ed.
  4. E. Akkermans, and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, 2007). [CrossRef]
  5. J. M. Drake, and A. Z. Genack, “Observation of nonclassical optical diffusion,” Phys. Rev. Lett. 63, 259–262 (1989). [CrossRef] [PubMed]
  6. M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near anderson localization of light,” Phys. Rev. Lett. 96, 063904 (2006). [CrossRef] [PubMed]
  7. R. Lenke, and G. Maret, “Multiple scattering of light: Coherent backscattering and transmission,” in Scattering in Polymeric and Colloidal Systems, W. Brown and K. Mortensen, eds. (Gordon and Breach Science Publishers, 2000).
  8. E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56, 1471–1474 (1986). [CrossRef] [PubMed]
  9. A. Ioffe, and A. Regel, “Non-crystalline, amorphous and liquid electronic semiconductors,” Prog. Semiconduct. 4, 237 (1960).
  10. M. P. V. Albada, and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985). [CrossRef] [PubMed]
  11. P.-E. Wolf, and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985). [CrossRef] [PubMed]
  12. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958). [CrossRef]
  13. H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, Inc. New York, 1981).
  14. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (JohnWiley & Sons, Inc, 1998). [CrossRef]
  15. E. P. Wigner, “Lower limit for the energy derivative of the scattering phase shift,” Phys. Rev. 98, 145–147 (1955). [CrossRef]
  16. M. P. van Albada, B. A. van Tiggelen, A. Lagendijk, and A. Tip, “Speed of propagation of classical waves in strongly scattering media,” Phys. Rev. Lett. 66, 3132–3135 (1991). [CrossRef] [PubMed]
  17. M. Störzer, C. M. Aegerter, and G. Maret, “Reduced transport velocity of multiply scattered light due to resonant scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73, 065602 (2006). [CrossRef]
  18. R. Sapienza, P. D. Garc’ıa, J. Bertolotti, M. D. Martín, A. Blanco, L. Viña, C. López, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99, 233902 (2007). [CrossRef]
  19. R. Tweer, “Vielfachstreuung von licht in systemen dicht gepackter mie-streuer: Auf dem weg zur andersonlokalisierung?” Ph.D. thesis (2002).
  20. C. M. Soukoulis, S. Datta, and E. N. Economou, “Propagation of classical waves in random media,” Phys. Rev. B 49, 3800–3810 (1994). [CrossRef]
  21. K. Busch, and C. M. Soukoulis, “Transport properties of random media: A new effective medium theory,” Phys. Rev. Lett. 75, 3442–3445 (1995). [CrossRef] [PubMed]
  22. K. Busch, and C. M. Soukoulis, “Transport properties of random media: An energy-density cpa approach,” Phys. Rev. B 54, 893–899 (1996). [CrossRef]
  23. S. Richter, M. Steinhart, H. Hofmeister, M. Zacharias, U. Gsele, N. Gaponik, A. Eychmller, A. L. Rogach, J. H. Wendorff, S. L. Schweizer, A. von Rhein, and R. B. Wehrspohn, “Quantum dot emitters in two-dimensional photonic crystals of macroporous silicon,” Appl. Phys. Lett. 87, 142107 (2005). [CrossRef]
  24. D. Hermann, M. Diem, S. F. Mingaleev, A. García-Martín, P. Wölfle, and K. Busch, “Photonic crystals with anomalous dispersion: Unconventional propagating modes in the photonic band gap,” Phys. Rev. B 77, 035112 (2008). [CrossRef]
  25. J. V. Dave, “Scattering of electromagnetic radiation by a large, absorbing sphere,” IBM J. Res. Develop. 13, 302–313 (1969). [CrossRef]
  26. W. J. Wiscombe, “Mie scattering calculations: Advances in technique and fast, vector-speed computer codes,” Tech. rep., NCAR Technical Note NCAR/TN-140 + STR (National Center for Atmospheric Research, Boulder, Colo. 80307) (1979).
  27. Z. S. Wu, and Y. P. Wang, “Electromagnetic scattering for multilayered sphere: Recursive algorithms,” Radio Sci. 26(6), 1393 (1991). [CrossRef]
  28. H. Du, “Mie-scattering calculation,” Appl. Opt. 43, 1951–1956 (2004). [CrossRef] [PubMed]
  29. J. K. Percus, and G. J. Yevick, “Analysis of classical statistical mechanics by means of collective coordinates,” Phys. Rev. 110, 1–13 (1958). [CrossRef]
  30. P. R. Conwell, P. W. Barber, and C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984). [CrossRef]
  31. C. Pecharroman, “T. G. C. no, and J. E. Iglesias, “Average dielectric constant of coated spheres: Application to the ir absorption spectra of nio and mgo,” Appl. Spectrosc. 47, 1203–1208 (1993). [CrossRef]
  32. B. A. van Tiggelen, and A. Lagendijk, “Rigorous Treatment of the Speed of Diffusing Classical Waves,” Europhys. Lett. 23, 311–316 (1993). [CrossRef]
  33. W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt. 42(9), 1710–1720 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited