OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 3 — Mar. 18, 2011

High-speed confocal fluorescence lifetime imaging microscopy (FLIM) with the analog mean delay (AMD) method

Youngjae Won, Sucbei Moon, Wenzhong Yang, Donguk Kim, Won-Taek Han, and Dug Young Kim  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3396-3405 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1278 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a high-speed confocal fluorescence lifetime imaging microscopy (FLIM) whose accuracy and photon economy are as good as that of a time-correlated single photon counting (TCSPC). It is based on a new lifetime determination scheme, the analog mean delay (AMD) method. Due to the technical advantages of multiple fluorescence photon detection capability, accurate lifetime determination scheme and high photon detection efficiency, the AMD method can be the most effective method for high-speed confocal FLIM. The feasibility of real-time confocal FLIM with the AMD method has been demonstrated by observing the dynamic reaction of calcium channels in a RBL-2H3 cell with respect to 4αPDD stimulus. We have achieved the photon detection rate of 125 times faster than a conventional TCSPC based system in this experiment.

© 2011 OSA

OCIS Codes
(000.2170) General : Equipment and techniques
(170.0110) Medical optics and biotechnology : Imaging systems
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 24, 2010
Revised Manuscript: January 28, 2011
Manuscript Accepted: January 28, 2011
Published: February 7, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Youngjae Won, Sucbei Moon, Wenzhong Yang, Donguk Kim, Won-Taek Han, and Dug Young Kim, "High-speed confocal fluorescence lifetime imaging microscopy (FLIM) with the analog mean delay (AMD) method," Opt. Express 19, 3396-3405 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. C. Gerristen, A. Draaijer, D. J. van den Heuvel, and A. V. Agronskaia, “Fluorescence lifetime imaging in scanning microscopy,” in Handbook of Biological Confocal Microscopy, 3rd Ed., James B. Pawley, ed. (Springer, 2006).
  2. P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9(2), 48–52 (1999). [CrossRef] [PubMed]
  3. J. Neefjes and N. P. Dantuma, “Fluorescent probes for proteolysis: tools for drug discovery,” Nat. Rev. Drug Discov. 3(1), 58–69 (2004). [CrossRef] [PubMed]
  4. H.-J. van Manen, P. Verkuijlen, P. Wittendorp, V. Subramaniam, T. K. van den Berg, D. Roos, and C. Otto, “Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy,” Biophys. J. 94(8), L67–L69 (2008). [CrossRef] [PubMed]
  5. R. K. Benninger, O. Hofmann, B. Onfelt, I. Munro, C. Dunsby, D. M. Davis, M. A. Neil, P. M. French, and A. J. de Mello, “Fluorescence-lifetime imaging of DNA-dye interactions within continuous-flow microfluidic systems,” Angew. Chem. Int. Ed. Engl. 46(13), 2228–2231 (2007). [CrossRef] [PubMed]
  6. A. Esposito, T. Tiffert, J. M. A. Mauritz, S. Schlachter, L. H. Bannister, C. F. Kaminski, and V. L. Lew, “FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells,” PLoS ONE 3(11), e3780 (2008). [CrossRef] [PubMed]
  7. H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol. 16(1), 19–27 (2005). [CrossRef] [PubMed]
  8. W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004). [CrossRef]
  9. T. H. Chia, A. Williamson, D. D. Spencer, and M. J. Levene, “Multiphoton fluorescence lifetime imaging of intrinsic fluorescence in human and rat brain tissue reveals spatially distinct NADH binding,” Opt. Express 16(6), 4237–4249 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-4237 . [CrossRef] [PubMed]
  10. W. Becker, A. Bergmann, H. Wabnitz, D. Grosenick, and A. Liebert, “High count rate multichannel TCSPC for optical tomography,” Proc. SPIE 4431, 249–254 (2001). [CrossRef]
  11. A. Esposito, H. C. Gerritsen, and F. S. Wouters, “Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed,” J. Opt. Soc. Am. A 24(10), 3261–3273 (2007). [CrossRef]
  12. J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J. Opt. Soc. Am. A 20(2), 368–379 (2003), http://www.opticsinfobase.org/josaa/abstract.cfm?uri=josaa-20-2-368 . [CrossRef]
  13. S. Moon, Y. Won, and D. Y. Kim, “Analog mean-delay method for high-speed fluorescence lifetime measurement,” Opt. Express 17(4), 2834–2849 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-4-2834 . [CrossRef] [PubMed]
  14. C. E. Shannon, “Communication in the presence of noise,” Proc. IRE 37(1), 10–21 (1949). [CrossRef]
  15. ISS, Inc, “Lifetime data of selected fluorophores,” http://www.iss.com/resources/fluorophores.html .
  16. K. Yoshiki, H. Azuma, K. Yoshioka, M. Hashimoto, and T. Araki, “Finding of Optimal Calcium Ion Probes for Fluorescence Lifetime Measurement,” Opt. Rev. 12(5), 415–419 (2005). [CrossRef]
  17. H. Watanabe, J. B. Davis, D. Smart, J. C. Jerman, G. D. Smith, P. Hayes, J. Vriens, W. Cairns, U. Wissenbach, J. Prenen, V. Flockerzi, G. Droogmans, C. D. Benham, and B. Nilius, “Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives,” J. Biol. Chem. 277(16), 13569–13577 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited