OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 3 — Mar. 18, 2011

Time-gating improves the spatial resolution of STED microscopy

Jeffrey R. Moffitt, Christian Osseforth, and Jens Michaelis  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4242-4254 (2011)
http://dx.doi.org/10.1364/OE.19.004242


View Full Text Article

Enhanced HTML    Acrobat PDF (1141 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Stimulated-emission depletion (STED) microscopy improves image resolution by encoding additional spatial information in a second stimulated-decay channel with a spatially-varying strength. Here we demonstrate that spatial information is also encoded in the fluorophore lifetime and that this information can be used to improve the spatial resolution of STED microscopy. By solving a kinetic model for emission in the presence of a time-varying STED pulse, we derive the effective resolution as a function of fluorophore lifetime and pulse duration. We find that the best resolution for a given pulse power is achieved with a pulse of infinitesimally short duration; however, the maximum resolution can be restored for pulses of finite duration by time-gating the fluorescence signal. In parallel, we consider time-gating in the presence of a continuous-wave (CW) STED beam and find that time-gating produces theoretically unbounded resolution with finite laser power. In both cases, the cost of this improved resolution is a reduction in the brightness of the final image. We conclude by discussing situations in which time-gated STED microscopy (T-STED) may provide improved microscope performance beyond an increase in resolution.

© 2011 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(110.0180) Imaging systems : Microscopy

ToC Category:
Microscopy

History
Original Manuscript: December 21, 2010
Revised Manuscript: February 10, 2011
Manuscript Accepted: February 11, 2011
Published: February 17, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Jeffrey R. Moffitt, Christian Osseforth, and Jens Michaelis, "Time-gating improves the spatial resolution of STED microscopy," Opt. Express 19, 4242-4254 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-5-4242


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Phys. Chem. 61(1), 345–367 (2010). [CrossRef] [PubMed]
  2. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009). [CrossRef] [PubMed]
  3. S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21(11), 1347–1355 (2003). [CrossRef] [PubMed]
  4. J. B. Pawley, S. W. Hell, K. I. Willig, M. Dyba, and V. Westphal, “Nanoscale Resolution with Focused Light: Stimulated Emission Depletion and Other Reversible Saturable Optical Fluorescence Transitions Microscopy Concepts,” in Handbook of Biological Confocal Microscopy (Springer US, 2006), pp. 571–579.
  5. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  6. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  7. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  8. R. Heintzmann, and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” J. B. Irving, S. Herbert, S. Jan, S. Katarina, and M. V. Pierre, eds. (SPIE, 1999), pp. 185–196.
  9. M. G. Gustafsson, D. A. Agard, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. 195(1), 10–16 (1999). [CrossRef] [PubMed]
  10. M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  11. S. R. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009). [CrossRef] [PubMed]
  12. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  13. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [CrossRef]
  14. B. Huang, M. Bates, and X. W. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009). [CrossRef] [PubMed]
  15. J. R. Lakowicz and B. R. Masters, “Principles of fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 029901 (2008). [CrossRef]
  16. K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007). [CrossRef] [PubMed]
  17. M. Leutenegger, C. Eggeling, and S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18(25), 26417–26429 (2010). [CrossRef] [PubMed]
  18. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008). [CrossRef] [PubMed]
  19. M. Dyba and S. W. Hell, “Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002). [CrossRef] [PubMed]
  20. B. R. Rankin, R. R. Kellner, and S. W. Hell, “Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source,” Opt. Lett. 33(21), 2491–2493 (2008). [PubMed]
  21. M. Dyba and S. W. Hell, “Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission,” Appl. Opt. 42(25), 5123–5129 (2003). [CrossRef] [PubMed]
  22. K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9(9), 3323–3329 (2009). [CrossRef] [PubMed]
  23. E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33(2), 113–115 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited