OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 3 — Mar. 18, 2011

Plasmonic metallic nanostructures by direct nanoimprinting of gold nanoparticles

Chia-Ching Liang, Mei-Yi Liao, Wen-Yu Chen, Tsung-Chieh Cheng, Wen-Huei Chang, and Chun-Hung Lin  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4768-4776 (2011)
http://dx.doi.org/10.1364/OE.19.004768


View Full Text Article

Enhanced HTML    Acrobat PDF (1449 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated the plasmonic metallic nanostructure fabricated by direct nanoimprinting of gold nanoparticles (AuNPs). This approach combines the patterning and lift-off processes into a simple one-step process without the need for expensive patterning lithographies and the stringent requirement of the lift-off process for nanostructures. Good imprinting integrity was accomplished with a negligible residual layer. The dynamic optical responses of the imprinted gold pillars from AuNPs to the bulk material during the annealing process were investigated. The localized surface plasmon resonance (LSPR) properties of AuNPs or gold pillar arrays can be controlled and tuned during the annealing process. The sensitivity of the gold pillar array in terms of the wavelength shift per refractive index unit (RIU) reached 259 nm/RIU. The size of the imprinted gold pillars is highly scalable in our process. The corresponding resonance wavelengths can be widely tuned from the visible to infrared region by changing the size of the gold pillars, thus providing a wide range of sensing capability.

© 2011 OSA

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Metamaterials

History
Original Manuscript: January 11, 2011
Revised Manuscript: February 9, 2011
Manuscript Accepted: February 12, 2011
Published: February 25, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Chia-Ching Liang, Mei-Yi Liao, Wen-Yu Chen, Tsung-Chieh Cheng, Wen-Huei Chang, and Chun-Hung Lin, "Plasmonic metallic nanostructures by direct nanoimprinting of gold nanoparticles," Opt. Express 19, 4768-4776 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-5-4768


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999). [CrossRef]
  3. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004). [CrossRef]
  4. W.-Y. Chen and C.-H. Lin, “A standing-wave interpretation of plasmon resonance excitation in split-ring resonators,” Opt. Express 18(13), 14280–14292 (2010). [CrossRef] [PubMed]
  5. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003). [CrossRef] [PubMed]
  6. S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21(29), 295303 (2010). [CrossRef] [PubMed]
  7. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003). [CrossRef]
  8. S. Ahn, S. Kim, and H. Jeon, “Single-defect photonic crystal cavity laser fabricated by a combination of laser holography and focused ion beam lithography,” Appl. Phys. Lett. 96(13), 131101 (2010). [CrossRef]
  9. G.-Y. Jung, E. Johnston-Halperin, W. Wu, Z. Yu, S.-Y. Wang, W. M. Tong, Z. Li, J. E. Green, B. A. Sheriff, A. Boukai, Y. Bunimovich, J. R. Heath, and R. S. Williams, “Circuit fabrication at 17 nm half-pitch by nanoimprint lithography,” Nano Lett. 6(3), 351–354 (2006). [CrossRef] [PubMed]
  10. J. Wan, Z. Shu, S.-R. Deng, S.-Q. Xie, B.-R. Lu, R. Liu, Y. Chen, and X.-P. Qu, “Duplication of nanoimprint templates by a novel SU-8/SiO[sub 2]/PMMA trilayer technique,” J. Vac. Sci. Technol. B 27(1), 19–22 (2009). [CrossRef]
  11. X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006). [CrossRef] [PubMed]
  12. X. P. Zhang, H. M. Liu, and S. F. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009). [CrossRef] [PubMed]
  13. C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001). [CrossRef]
  14. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–Mask Colloidal Lithography,” Adv. Mater. 19(23), 4297–4302 (2007). [CrossRef]
  15. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003). [CrossRef] [PubMed]
  16. J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of Crescent-Shaped Optical Antennas,” Adv. Mater. 17(17), 2131–2134 (2005). [CrossRef]
  17. S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett. 7(7), 1869–1877 (2007). [CrossRef] [PubMed]
  18. I. Park, S. H. Ko, H. Pan, C. P. Grigoropoulos, A. P. Pisano, J. M. J. Frechet, E. S. Lee, and J. H. Jeong, “Nanoscale patterning and electronics on flexible substrate by direct nanoimprinting of metallic nanoparticles,” Adv. Mater. 20(3), 489–496 (2008). [CrossRef]
  19. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996). [CrossRef]
  20. L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007). [CrossRef]
  21. C.-H. Lin, H.-H. Lin, W.-Y. Chen, and T.-C. Cheng, “Direct imprinting on a polycarbonate substrate with a compressed air press for polarizer applications,” Microelectronic Engineering, ( http://dx.doi.org/10.1016/j.mee.2010.1012.1089 ) (2011).
  22. J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003). [CrossRef] [PubMed]
  23. M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61–62(1–3), 441–448 (2002). [CrossRef]
  24. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18(13), 5314–5320 (2002). [CrossRef]
  25. M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size,” Langmuir 14(1), 17–30 (1998). [CrossRef]
  26. C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, “Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis,” Microelectron. Eng. 83(4–9), 1798–1804 (2006). [CrossRef]
  27. C. F. Bohren, and D. R. Huffman, “Absorption and Scattering by a Sphere,” in Absorption and Scattering of Light by Small Particles (John Wiley, New York, 1983), pp. 82–129.
  28. C. M. S. Torres, “Nanostructure Science and Technology,” in Alternative Lithography: Unleashing The Potentials Of Nanotechnology D. J. Lockwood, ed. (Kluwer Academic, Plenum Germany, 2003).
  29. Y. T. Chang, Y. C. Lai, C. T. Li, C. K. Chen, and T. J. Yen, “A multi-functional plasmonic biosensor,” Opt. Express 18(9), 9561–9569 (2010). [CrossRef] [PubMed]
  30. S. Kim, J. M. Jung, D. G. Choi, H. T. Jung, and S. M. Yang, “Patterned arrays of au rings for localized surface plasmon resonance,” Langmuir 22(17), 7109–7112 (2006). [CrossRef] [PubMed]
  31. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007). [CrossRef]
  32. K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008). [CrossRef]
  33. S. Lee, K. M. Mayer, and J. H. Hafner, “Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates,” Anal. Chem. 81(11), 4450–4455 (2009). [CrossRef] [PubMed]
  34. J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007). [CrossRef]
  35. C. Langhammer, B. Kasemo, and I. Zoric, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007). [CrossRef] [PubMed]
  36. T. Karakouz, D. Holder, M. Goomanovsky, A. Vaskevich, and I. Rubinstein, “Morphology and Refractive Index Sensitivity of Gold Island Films,” Chem. Mater. 21(24), 5875–5885 (2009). [CrossRef]
  37. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited