OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 4 — May. 4, 2011

Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy

Jonas Binding, Juliette Ben Arous, Jean-François Léger, Sylvain Gigan, Claude Boccara, and Laurent Bourdieu  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 4833-4847 (2011)
http://dx.doi.org/10.1364/OE.19.004833


View Full Text Article

Enhanced HTML    Acrobat PDF (1529 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-photon laser scanning microscopy (2PLSM) is an important tool for in vivo tissue imaging with sub-cellular resolution, but the penetration depth of current systems is potentially limited by sample-induced optical aberrations. To quantify these, we measured the refractive index n' in the somatosensory cortex of 7 rats in vivo using defocus optimization in full-field optical coherence tomography (ff-OCT). We found n' to be independent of imaging depth or rat age. From these measurements, we calculated that two-photon imaging beyond 200µm into the cortex is limited by spherical aberration, indicating that adaptive optics will improve imaging depth.

© 2011 OSA

OCIS Codes
(080.1010) Geometric optics : Aberrations (global)
(110.4500) Imaging systems : Optical coherence tomography
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(290.0290) Scattering : Scattering
(290.3030) Scattering : Index measurements
(110.0113) Imaging systems : Imaging through turbid media
(180.4315) Microscopy : Nonlinear microscopy
(170.6935) Medical optics and biotechnology : Tissue characterization
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 7, 2010
Revised Manuscript: January 24, 2011
Manuscript Accepted: February 2, 2011
Published: February 28, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Jonas Binding, Juliette Ben Arous, Jean-François Léger, Sylvain Gigan, Claude Boccara, and Laurent Bourdieu, "Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy," Opt. Express 19, 4833-4847 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-6-4833


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003). [CrossRef] [PubMed]
  2. K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385(6612), 161–165 (1997). [CrossRef] [PubMed]
  3. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009). [CrossRef] [PubMed]
  4. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2009). [CrossRef] [PubMed]
  5. J. M. Girkin, J. Vijverberg, M. Orazio, S. Poland, and A. J. Wright, “Adaptive optics in confocal and two-photon microscopy of rat brain: a single correction per optical section,” in Multiphoton Microscopy in the Biomedical Sciences VII(SPIE, San Jose, CA, USA, 2007), pp. 64420T–64427.
  6. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006). [CrossRef] [PubMed]
  7. W. Gottschalk, “Ein Messverfahren zur Bestimmung der optischen Parameter biologischer Gewebe in vitro,” (Universität Karlsruhe, Karlsruhe, 1993), p. 172.
  8. N. Lue, J. Bewersdorf, M. D. Lessard, K. Badizadegan, R. R. Dasari, M. S. Feld, and G. Popescu, “Tissue refractometry using Hilbert phase microscopy,” Opt. Lett. 32(24), 3522–3524 (2007). [CrossRef] [PubMed]
  9. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005). [CrossRef] [PubMed]
  10. S. N. Roper, M. D. Moores, G. V. Gelikonov, F. I. Feldchtein, N. M. Beach, M. A. King, V. M. Gelikonov, A. M. Sergeev, and D. H. Reitze, “In vivo detection of experimentally induced cortical dysgenesis in the adult rat neocortex using optical coherence tomography,” J. Neurosci. Methods 80(1), 91–98 (1998). [CrossRef] [PubMed]
  11. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995). [CrossRef] [PubMed]
  12. S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett. 34(10), 1576–1578 (2009). [CrossRef] [PubMed]
  13. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002). [CrossRef] [PubMed]
  14. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002). [CrossRef]
  15. A. F. Fercher, “Optical Coherence Tomography,” J. Biomed. Opt. 1(2), 157–173 (1996). [CrossRef]
  16. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995). [CrossRef] [PubMed]
  17. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21(17), 1408–1410 (1996). [CrossRef] [PubMed]
  18. S. A. Alexandrov, A. V. Zvyagin, K. K. Silva, and D. D. Sampson, “Bifocal optical coherenc refractometry of turbid media,” Opt. Lett. 28(2), 117–119 (2003). [CrossRef] [PubMed]
  19. A. Knuettel and M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5(1), 83–92 (2000). [CrossRef]
  20. A. Zvyagin, K. K. M. B. Silva, S. Alexandrov, T. Hillman, J. Armstrong, T. Tsuzuki, and D. Sampson, “Refractive index tomography of turbid media by bifocal optical coherence refractometry,” Opt. Express 11(25), 3503–3517 (2003). [CrossRef] [PubMed]
  21. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995). [CrossRef]
  22. D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15(13), 8176–8190 (2007). [CrossRef] [PubMed]
  23. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007). [CrossRef] [PubMed]
  24. A. Egner and S. W. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch,” J. Microsc. 193(3), 244–249 (1999). [CrossRef]
  25. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32(14), 2007–2009 (2007). [CrossRef] [PubMed]
  26. J. Binding, “Adaptive Optics in Two-Photon-Microscopy,” in Fakultät für Physik und Astronomie(Ruprecht-Karls-Universität Heidelberg, Heidelberg, 2008), p. 99.
  27. M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, U.K., 1999).
  28. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001). [CrossRef] [PubMed]
  29. D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express 16(24), 19434–19446 (2008). [CrossRef] [PubMed]
  30. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009). [CrossRef] [PubMed]
  31. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2453 KB)     
» Media 2: AVI (3455 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited