OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 4 — May. 4, 2011

High efficiency plasmonic probe design for parallel near-field optics applications

Guanghao Rui, Weibin Chen, and Qiwen Zhan  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5187-5195 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (964 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study a high efficiency plasmonic near-field probe that integrates a spiral plasmonic lens and a sharp conical tip under circular polarized illumination. To achieve high field enhancement, two layers of spiral plasmonic lens and a composite tip design are adopted. The plasmonic probe exhibits optical spin dependence due to the use of spiral plasmonic lens. Under 633 nm wavelength excitation, an electric field enhancement factor of 366 and circular polarization extinction ratio of 81 can be achieved. Such a spin dependence enables the hot spot at the tip apex to be switched on and off by modulating the polarization handedness. The probe can be made in an array format that is suitable for large area parallel near-field optics applications such as lithography and microscopy.

© 2011 OSA

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(230.5440) Optical devices : Polarization-selective devices
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization
(110.4235) Imaging systems : Nanolithography
(260.6042) Physical optics : Singular optics

ToC Category:

Original Manuscript: February 10, 2011
Revised Manuscript: February 23, 2011
Manuscript Accepted: February 23, 2011
Published: March 3, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Guanghao Rui, Weibin Chen, and Qiwen Zhan, "High efficiency plasmonic probe design for parallel near-field optics applications," Opt. Express 19, 5187-5195 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE 5377, 1–20 (2004).
  2. J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16(6), 3137–3141 (1998). [CrossRef]
  3. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999). [CrossRef]
  4. J. K. Chua, V. M. Murukeshan, S. K. Tan, and Q. Y. Lin, “Four beams evanescent waves interference lithography for patterning of two dimensional features,” Opt. Express 15(6), 3437–3451 (2007). [CrossRef] [PubMed]
  5. V. M. Murukeshan, J. K. Chua, S. K. Tan, and Q. Y. Lin, “Nano-scale three dimensional surface relief features using single exposure counterpropagating multiple evanescent waves interference phenomenon,” Opt. Express 16(18), 13857–13870 (2008). [CrossRef] [PubMed]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  7. X. Guo, J. Du, Y. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31(17), 2613–2615 (2006). [CrossRef] [PubMed]
  8. M. He, Z. Zhang, S. Shi, J. Du, X. Li, S. Li, and W. Ma, “A practical nanofabrication method: surface plasmon polaritons interference lithography based on backside-exposure technique,” Opt. Express 18(15), 15975–15980 (2010). [CrossRef] [PubMed]
  9. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004). [CrossRef]
  10. L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006). [CrossRef] [PubMed]
  11. R. Guo, E. C. Kinzel, Y. Li, S. M. Uppuluri, A. Raman, and X. Xu, “Three-dimensional mapping of optical near field of a nanoscale bowtie antenna,” Opt. Express 18(5), 4961–4971 (2010). [CrossRef] [PubMed]
  12. S. M. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18(7), 7369–7375 (2010). [CrossRef] [PubMed]
  13. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009). [CrossRef] [PubMed]
  14. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  15. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006). [CrossRef] [PubMed]
  16. W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009). [CrossRef] [PubMed]
  17. G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 035004–035009 (2010). [CrossRef]
  18. A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010). [CrossRef] [PubMed]
  19. P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett. 11(1), 220–224 (2010). [CrossRef] [PubMed]
  20. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009). [CrossRef] [PubMed]
  21. Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35(11), 1755–1757 (2010). [CrossRef] [PubMed]
  22. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010). [CrossRef] [PubMed]
  23. T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10(8), 3123–3128 (2010). [CrossRef] [PubMed]
  24. X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009). [CrossRef] [PubMed]
  25. E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited