OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 4 — May. 4, 2011

Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph

Raoul-Amadeus Lorbeer, Marko Heidrich, Christina Lorbeer, Diego Fernando Ramírez Ojeda, Gerd Bicker, Heiko Meyer, and Alexander Heisterkamp  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 5419-5430 (2011)
http://dx.doi.org/10.1364/OE.19.005419


View Full Text Article

Enhanced HTML    Acrobat PDF (1928 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical Projection Tomography (OPT) proved to be useful for the three-dimensional tracking of fluorescence signals in biological model organisms with sizes up to several millimeters. This tomographic technique detects absorption as well as fluorescence to create multimodal three-dimensional data. While the absorption of a specimen is detected very fast usually less than 0.1% of the fluorescence photons are collected. The low efficiency can result in radiation dose dependent artifacts such as photobleaching and phototoxicity. To minimize these effects as well as artifacts introduced due to the use of a CCD- or CMOS- camera-chip, we constructed a Scanning Laser Optical Tomograph (SLOT). Compared to conventional fluorescence OPT our first SLOT enhanced the photon collection efficiency a hundredfold.

© 2011 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.2970) Imaging systems : Image detection systems
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(180.5810) Microscopy : Scanning microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Microscopy

History
Original Manuscript: January 4, 2011
Revised Manuscript: February 24, 2011
Manuscript Accepted: February 24, 2011
Published: March 8, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Raoul-Amadeus Lorbeer, Marko Heidrich, Christina Lorbeer, Diego F. Ramírez Ojeda, Gerd Bicker, Heiko Meyer, and Alexander Heisterkamp, "Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph," Opt. Express 19, 5419-5430 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-6-5419


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002). [CrossRef] [PubMed]
  2. J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175–181 (2003). [CrossRef] [PubMed]
  3. J. Huisken, J. Swoger, F. D. Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004). [CrossRef] [PubMed]
  4. H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007). [CrossRef] [PubMed]
  5. J. Huisken and D. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009). [CrossRef] [PubMed]
  6. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009). [CrossRef]
  7. T. M. Buzug, Computed Tomography from Photon Statistics to Modern Cone-beam CT (Springer-Verlag, 2008).
  8. J. Sharpe, “Optical projection tomography,” Annu. Rev. Biomed. Eng. 6, 209–228 (2004). [CrossRef] [PubMed]
  9. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50, 4645–4665 (2005). [CrossRef] [PubMed]
  10. J. Thomas, M. Bastiani, M. B. Bate, and C. Goodman, “From grasshopper to Drosophila: a common plan for neuronal development,” Nature 310, 203–207 (1984). [CrossRef] [PubMed]
  11. M. Stern, S. Knipp, and G. Bicker, “Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria),” J. Comp. Neurol. 501, 38–51 (2007). [CrossRef] [PubMed]
  12. C. Vinegoni, L. Fexon, P. F. Feruglio, M. Pivovarov, J.-L. Figueiredo, M. Nahrendorf, A. Pozzo, A. Sbarbati, and R. Weissleder, “High throughput transmission optical projection tomography using low cost graphics processing unit,” Opt. Express 17, 22320–22332 (2009). [CrossRef]
  13. S. R. M. D. Abramoff, and P. J. Magelhaes, “Image processing with imageJ,” Biophotonics Int. 11, 36–42 (2004).
  14. W. Burger and M. J. Burge, Digital Image Processing: An Algorithmic Introduction using Java (Springer Science + Business Media, 2007).
  15. J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs, “Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations,” IEEE Comput. Graph. Appl. 29, 6–13 (2009). [CrossRef]
  16. N. Tyrer, J. Turner, and J. Altman, “Identifiable neurons in the locust central nervous system that react with antibodies to serotonin,” J. Comp. Neurol. 227, 313–330 (1984). [CrossRef] [PubMed]
  17. A. Vallés and K. White, “Serotonin-containing neurons in Drosophila melanogaster: development and distribution,” J. Comp. Neurol. 268, 414–428 (1988). [CrossRef] [PubMed]
  18. B. Münch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and ring artifact removal with combined wavelet -fourier filtering,” Opt. Express 17, 8567–8591 (2009). [CrossRef] [PubMed]
  19. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer Science + Business Media, 2006). [CrossRef]
  20. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Resolution improvement in emission optical projection tomography,” Phys. Med. Biol. 52, 2775–2790 (2007). [CrossRef] [PubMed]
  21. R.-A. Lorbeer, H. Meyer, M. Heidrich, H. Lubatschowski, and A. Heisterkamp, “Applying optical Fourier filtering to standard optical projection tomography,” Proc. SPIE 7570, 75700F (2010). [CrossRef]
  22. N. Krstajíc, and S. Doran, “Initial characterization of fast laser scanning optical CT apparatus for 3-D dosimetry,” Journal of Physics: Conference Series (Institute of Physics Publishing, 2009), vol. 164, page 012022. [CrossRef]
  23. D. W. Wilson and B. M. W. Tsui, “Noise properties of filtered-backprojection andML-EMreconstructed emission tomographic images,” IRE Trans. Nucl. Sci. 40, 1198–1203 (1993). [CrossRef]
  24. M. Anstey, S. Rogers, S. Ott, M. Burrows, and S. Simpson, “Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts,” Science 323, 627–630 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (3072 KB)     
» Media 2: MOV (2339 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited