OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 4 — May. 4, 2011

Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter

Nicolas Large, Javier Aizpurua, Vivian Kaixin Lin, Siew Lang Teo, Renaud Marty, Sudhiranjan Tripathy, and Adnen Mlayah  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5587-5595 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (902 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using numerical simulations, we demonstrate that fine shape details of gold nanoring-disks are responsible for significant modifications of their localized surface plasmon properties. The numerical results are supported by optical transmission measurements and by atomic force microscopy. In particular, we found that, depending on the ring wall sharpness, the spectral shift of the ring-like localized surface plasmon resonance can be as large as few hundred nanometers. These results shed the light on the strong sensitivity of the surface plasmon properties to very small deviations of the ring and disk shapes from the ideally flat surfaces and sharp edges. This effect is particularly important for tailoring the surface plasmon properties of metallic nanostrutures presenting edges and wedges for applications in bio- and chemical sensing and for enhancement of light scattering.

© 2011 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(220.0220) Optical design and fabrication : Optical design and fabrication
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optics at Surfaces

Original Manuscript: January 10, 2011
Revised Manuscript: February 17, 2011
Manuscript Accepted: February 27, 2011
Published: March 10, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Nicolas Large, Javier Aizpurua, Vivian Kaixin Lin, Siew Lang Teo, Renaud Marty, Sudhiranjan Tripathy, and Adnen Mlayah, "Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter," Opt. Express 19, 5587-5595 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Haes, and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002). [CrossRef] [PubMed]
  2. P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47–52 (2004). [CrossRef] [PubMed]
  3. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007). [CrossRef] [PubMed]
  4. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008). [CrossRef] [PubMed]
  5. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005). [CrossRef]
  6. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707–718 (2008). [CrossRef]
  7. M. G. Banaee, and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett. 35(5), 760–763 (2010). [CrossRef] [PubMed]
  8. S. Tripathy, R. Marty, V. K. Lin, S. L. Teo, E. Ye, A. Arbouet, L. Saviot, C. Girard, M. Y. Han, and A. Mlayah, “Acousto-plasmonic and eurface-4nhanced Raman ecattering properties of coupled gold nanospheres/nanodisk trimers,” Nano Lett. 11(2), 431–437 (2011). [CrossRef] [PubMed]
  9. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008). [CrossRef]
  10. M. A. Suarez, T. Grosjeana, D. Charrauta, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270(2), 447–454 (2007). [CrossRef]
  11. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3, 287–291 (2009). [CrossRef]
  12. N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10(5), 1741–1746 (2010). [CrossRef] [PubMed]
  13. S. A. Maier, Plasmonics: Fundamentals and Applications (Spinger-Verlag, 2007).
  14. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2, 1–24 (2008).
  15. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010). [CrossRef] [PubMed]
  16. L. C. Davis, “Electrostatic edge modes of a dielectric wedge,” Phys. Rev. B 14, 5523–5525 (1976). [CrossRef]
  17. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999). [CrossRef]
  18. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic Press, 2000).
  19. C. Oubre, and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740–17747 (2004). [CrossRef]
  20. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7(3), 729–732 (2007). [CrossRef] [PubMed]
  21. A. L. González, and C. Noguez, “Influence of morphology on the optical properties of metal nanoparticles,” J. Comput. Theor. Nanosci. 4, 231–238 (2007).
  22. N. Large, L. Saviot, J. Margueritat, J. Gonzalo, C. N. Afonso, A. Arbouet, P. Langot, A. Mlayah, and J. Aizpurua, “Acousto-plasmonic hot spots in metallic nano-objects,” Nano Lett. 9(11), 3732–3738 (2009). [CrossRef] [PubMed]
  23. B. N. Khlebtsov, and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 11, 11516–11527 (2007). [CrossRef]
  24. S. L. Teo, V. K. Lin, R. Marty, N. Large, E. Alarcon-Llado, A. Arbouet, C. Girard, J. Aizpurua, S. Tripathy, and A. Mlayah, “Gold nanoring trimers: a versatile structure for infrared sensing,” Opt. Express 18(21), 22271–22282 (2010). [CrossRef] [PubMed]
  25. P. Nordlander, “The ring: a leitmotif in plasmonics,” ACS Nano 3(3), 488–492 (2009). [CrossRef] [PubMed]
  26. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003). [CrossRef] [PubMed]
  27. F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007). [CrossRef]
  28. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: dubradiant LSPR sensing and tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  29. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009). [CrossRef] [PubMed]
  30. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonics nanocavities,” ACS Nano 4(3), 1664–1670 (2010). [CrossRef] [PubMed]
  31. Z. Ku, and S. R. J. Brueck, “Experimental demonstration of sidewall angle induced bianisotropy in multiple layer negative index metamaterial,” Appl. Phys. Lett. 94, 153107 (2009). [CrossRef]
  32. V. Kaixin Lin, S. Lang Teo, R. Marty, A. Arbouet, C. Girard, E. Alarcon-Llado, S. Hua Liu, M. Yong Han, S. Tripathy, and A. Mlayah, “Dual wavelength sensing based on interacting gold nanodisk trimers,” Nanotechnology 21(30), 305501 (2010). [CrossRef]
  33. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006). [CrossRef] [PubMed]
  34. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). [CrossRef] [PubMed]
  35. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004). [CrossRef]
  36. Y. Wu, and P. Nordlander, “Plasmon hybridization in nanoshells with a nonconcentric core,” J. Chem. Phys. 125, 124708 (2006). [CrossRef] [PubMed]
  37. F. J. García de Abajo, and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 115418 (1998).
  38. F. J. García de Abajo, and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002). [CrossRef]
  39. P. B. Johnson, and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  40. W. J. Tropf, M. E. Thomas, and E. W. Rogala, Handbook of Optics, third ed., M. Bass, ed. (McGraw-Hill, 2010), Vol. 4, Chap. 2.
  41. R. A. Paquin, Handbook of Optics, third ed., M. Bass, ed. (McGraw-Hill, 2010), Vol. 4, Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited