OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 4 — May. 4, 2011

Far-field optical nanoscopy with reduced number of state transition cycles

Thorsten Staudt, Andreas Engler, Eva Rittweger, Benjamin Harke, Johann Engelhardt, and Stefan W. Hell  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5644-5657 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1317 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a method to reduce the number of state transition cycles that a molecule undergoes in far-field optical nanoscopy of the RESOLFT type, i.e. concepts relying on saturable (fluorescence) state transitions induced by a spatially modulated light pattern. The method is exemplified for stimulated emission depletion (STED) microscopy which uses stimulated emission to transiently switch off the capability of fluorophores to fluoresce. By switching fluorophores off only if there is an adjacent fluorescent feature to be recorded, the method reduces the number of state transitions as well as the average time a dye is forced to reside in an off-state. Thus, the photobleaching of the sample is reduced, while resolution and recording speed are preserved. The power of the method is exemplified by imaging immunolabeled glial cells with up to 8-fold reduced photobleaching.

© 2011 OSA

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy
(230.1040) Optical devices : Acousto-optical devices
(350.5730) Other areas of optics : Resolution

ToC Category:

Original Manuscript: December 20, 2010
Revised Manuscript: February 21, 2011
Manuscript Accepted: February 25, 2011
Published: March 11, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Thorsten Staudt, Andreas Engler, Eva Rittweger, Benjamin Harke, Johann Engelhardt, and Stefan W. Hell, "Far-field optical nanoscopy with reduced number of state transition cycles," Opt. Express 19, 5644-5657 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  2. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [CrossRef] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  4. M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  5. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  6. S. W. Hell, “Far-Field Optical Nanoscopy,” Science 316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  7. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009). [CrossRef] [PubMed]
  8. S. Hell, “Far-Field Optical Nanoscopy,” in Single Molecule Spectroscopy in Chemistry, A. Gräslund, Rigler, R., Widengren, J., ed. (Springer, Berlin, 2009), pp. 365 - 398.
  9. S. E. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. W. Hell, “Direct light-driven modulation of luminescence from Mn-doped ZnSe quantum dots,” Angew. Chem. Int. Ed. Engl. 47(14), 2685–2688 (2008). [CrossRef] [PubMed]
  10. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [CrossRef]
  11. P. S. Dittrich and P. Schwille, “Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation,” Appl. Phys. B 73(8), 829–837 (2001). [CrossRef]
  12. L. L. Song, C. A. Varma, J. W. Verhoeven, and H. J. Tanke, “Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy,” Biophys. J. 70(6), 2959–2968 (1996). [CrossRef] [PubMed]
  13. J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, and P. Tinnefeld, “A Reducing and Oxidizing System Minimizes Photobleaching and Blinking of Fluorescent Dyes,” Angew. Chem. Int. Ed. Engl. 47(29), 5465–5469 (2008). [CrossRef] [PubMed]
  14. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006). [CrossRef] [PubMed]
  15. R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. F. Van Noorden, and E. M. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nature Biotechnol. 25, 249–253 (2007). [CrossRef]
  16. S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21(11), 1347–1355 (2003). [CrossRef] [PubMed]
  17. V. Westphal and S. W. Hell, “Nanoscale Resolution in the Focal Plane of an Optical Microscope,” Phys. Rev. Lett. 94(14), 143903 (2005). [CrossRef] [PubMed]
  18. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schoenle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008). [CrossRef] [PubMed]
  19. C. G. Dotti and K. Simons, “Polarized Sorting of viral glycoproteins to the axon and dendrites of hippocampal-neurons in culture,” Cell 62, 63–72 (1990). [CrossRef] [PubMed]
  20. M. Encinas, M. Iglesias, Y. H. Liu, H. Y. Wang, A. Muhaisen, V. Cena, C. Gallego, and J. X. Comella, “Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells,” J. Neurochem. 75(3), 991–1003 (2000). [CrossRef] [PubMed]
  21. S. Back, P. Haas, J. A. Tschaepe, T. Gruebl, J. Kirsch, U. Mueller, K. Beyreuther, and S. Kins, “beta-amyloid precursor protein can be transported independent of any sorting signal to the axonal and dendritic compartment,” J. Neurosci. Res. 85(12), 2580–2590 (2007). [CrossRef] [PubMed]
  22. S. W. Hell and M. Kroug, “Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995). [CrossRef]
  23. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007). [CrossRef] [PubMed]
  24. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002). [CrossRef]
  25. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  26. R. Heintzmann and M. G. L. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3(7), 362–364 (2009). [CrossRef]
  27. H. Bock, C. Geisler, C. A. Wurm, C. Von Middendorff, S. Jakobs, A. Schonle, A. Egner, S. W. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B 88(2), 161–165 (2007). [CrossRef]
  28. J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008). [CrossRef] [PubMed]
  29. S. W. Hell, “Strategy for far-field optical imaging and writing without diffraction limit,” Phys. Lett. A 326(1-2), 140–145 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited