OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 4 — May. 4, 2011

Axial scanning laser Doppler velocimeter using wavelength change without moving mechanism in sensor probe

Koichi Maru  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 5960-5969 (2011)
http://dx.doi.org/10.1364/OE.19.005960


View Full Text Article

Enhanced HTML    Acrobat PDF (875 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scanning laser Doppler velocimeter (LDV) without any moving mechanism in its sensor probe is proposed. In the proposed scanning LDV, the measurement position is axially scanned by change in the wavelength of the light input to the sensor probe, instead of using a moving mechanism in the sensor probe. For this purpose, a tunable laser and diffraction gratings are used, and the sensor probe including the gratings is separated from the main body including the tunable laser. To demonstrate the scanning function based on the proposed concept, an experiment was conducted using optical fibers, a commercial tunable laser and a setup of the sensor probe consisting of bulk optical components. As the experimental result, it is found that the measurement positions estimated from the measured beat frequencies are in good agreement with the theoretical values. The scan ranges over a wavelength range of 30 nm are estimated to be 29.3 mm when the beam angle to the measurement position at the wavelength of 1540 nm is 10° and 20.8 mm when the beam angle is 15°. The result indicates that the scanning function by means of changing the wavelength input to the sensor probe is successfully demonstrated for the first time. The proposed method has the potential for realizing a scanning LDV with a simple, compact and reliable sensor probe.

© 2011 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 3, 2011
Revised Manuscript: March 7, 2011
Manuscript Accepted: March 7, 2011
Published: March 16, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Koichi Maru, "Axial scanning laser Doppler velocimeter using wavelength change without moving mechanism in sensor probe," Opt. Express 19, 5960-5969 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-7-5960


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. R. Grant and K. L. Orloff, “Two-color dual-beam backscatter laser Doppler velocimeter,” Appl. Opt. 12(12), 2913–2916 (1973). [CrossRef] [PubMed]
  2. M. Uchiyama and K. Hakomori, “A beam scanning LDV to measure velocity profile of unsteady flow,” Precis. Eng. 48, 939–944 (1982) (in Japanese). [CrossRef]
  3. F. Durst, B. Lehmann, and C. Tropea, “Laser-Doppler system for rapid scanning of flow fields,” Rev. Sci. Instrum. 52(11), 1676–1681 (1981). [CrossRef]
  4. P. Sriram, S. Hanagud, J. Craig, and N. M. Komerath, “Scanning laser Doppler Technique for velocity profile sensing on a moving surface,” Appl. Opt. 29(16), 2409–2417 (1990). [CrossRef] [PubMed]
  5. N. Nakatani, T. Nishikawa, Y. Yoneda, Y. Nakano, and T. Yamada, “Space-correlation measurement of attaching jets by the new scanning laser Doppler velocimeter using a diffraction grating,” in Proceedings of 7th Symp. on Turbulence (University of Missouri-Rolla, 1981), pp. 380–389.
  6. E. B. Li, A. K. Tieu, and W. Y. D. Yuen, “Measurements of velocity distributions in the deformation zone in cold rolling by a scanning LDV,” Opt. Lasers Eng. 35(1), 41–49 (2001). [CrossRef]
  7. M. Tirabassi and S. J. Rothberg, “Scanning LDV using wedge prisms,” Opt. Lasers Eng. 47(3-4), 454–460 (2009). [CrossRef]
  8. T. Eiju, K. Matsuda, J. Ohtsubo, K. Honma, and K. Shimizu, “A frequency shifting of LDV for blood velocity measurement by a moving wedged glass,” Appl. Opt. 20(22), 3833–3837 (1981). [CrossRef] [PubMed]
  9. H. Nishihara, J. Koyama, N. Hoki, F. Kajiya, M. Hironaga, and M. Kano, “Optical-fiber laser Doppler velocimeter for high-resolution measurement of pulsatile blood flows,” Appl. Opt. 21(10), 1785–1790 (1982). [CrossRef] [PubMed]
  10. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Opt. 33(16), 3549–3558 (1994). [CrossRef] [PubMed]
  11. W. N. Sharpe, Jr., Springer Handbook of Experimental Solid Mechanics (Springer, New York, 2008), Section 29.6.
  12. M. Stiegimeier and C. Tropea, “Mobile fiber-optic laser Doppler anemometer,” Appl. Opt. 31(21), 4096–4105 (1992). [CrossRef]
  13. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer – Verlag Berlin Heidelberg, 2003), Section 7.3.
  14. K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocitmeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009). [CrossRef]
  15. J. Schmidt, R. Völkel, W. Stork, J. T. Sheridan, J. Schwider, N. Streibl, and F. Durst, “Diffractive beam splitter for laser Doppler velocimetry,” Opt. Lett. 17(17), 1240–1242 (1992). [CrossRef] [PubMed]
  16. H. W. Jentink, J. A. J. van Beurden, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, and J. Greve, “A compact differential laser Doppler velocimeter using a semiconductor laser,” J. Phys. E Sci. Instrum. 20(10), 1281–1283 (1987). [CrossRef]
  17. K. Plamann, H. Zellmer, J. Czarske, and A. Tünnermann, “Directional discrimination in laser Doppler anemometry (LDA) without frequency shifting using twinned optical fibres in the receiving optics,” Meas. Sci. Technol. 9(11), 1840–1846 (1998). [CrossRef]
  18. J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002). [CrossRef]
  19. L. Büttner, J. Czarske, and H. Knuppertz, “Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44(12), 2274–2280 (2005). [CrossRef] [PubMed]
  20. F. Onofri, “Three interfering beams in laser Doppler velocimetry for particle position and microflow velocity profile measurements,” Appl. Opt. 45(14), 3317–3324 (2006). [CrossRef] [PubMed]
  21. J. Oldengarm and P. Venkatesh, “A simple two-component laser Doppler anemometer using a rotating radial diffraction grating,” J. Phys. E Sci. Instrum. 9(11), 1009–1012 (1976). [CrossRef]
  22. J. P. Sharpe, “A phase-stepped grating technique for frequency shifting in laser Doppler velocimetry,” Opt. Lasers Eng. 45(11), 1067–1070 (2007). [CrossRef]
  23. R. Sawada, K. Hane, and E. Higurashi, Optical micro electro mechanical systems (Ohmsha, Tokyo, 2002), Section 5.2. (in Japanese)
  24. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer – Verlag Berlin Heidelberg, 2003), Section 7.2.2.
  25. M. Takahashi, S. Watanabe, M. Kurihara, T. Takeuchi, Y. Deki, S. Takaesu, M. Horie, T. Miyazaki, K. Suzuki, N. Sakuma, A. Kawauchi, and H. Yamazaki, “Tunable Lasers Based on Silica Waveguide Ring Resonators,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OWJ1.
  26. D. G. Rabus, Z. Bian, and A. Shakouri, “Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1249–1256 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited