OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 4 — May. 4, 2011

Compressive multiple view projection incoherent holography

Yair Rivenson, Adrian Stern, and Joseph Rosen  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6109-6118 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1203 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multiple view projection holography is a method to obtain a digital hologram by recording different views of a 3D scene with a conventional digital camera. Those views are digitally manipulated in order to create the digital hologram. The method requires a simple setup and operates under white light illuminating conditions. The multiple views are often generated by a camera translation, which usually involves a scanning effort. In this work we apply a compressive sensing approach to the multiple view projection holography acquisition process and demonstrate that the 3D scene can be accurately reconstructed from the highly subsampled generated Fourier hologram. It is also shown that the compressive sensing approach, combined with an appropriate system model, yields improved sectioning of the planes of different depths.

© 2011 OSA

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.3190) Image processing : Inverse problems
(100.6890) Image processing : Three-dimensional image processing
(100.6950) Image processing : Tomographic image processing
(110.1758) Imaging systems : Computational imaging
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: January 4, 2011
Revised Manuscript: February 22, 2011
Manuscript Accepted: February 27, 2011
Published: March 17, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Yair Rivenson, Adrian Stern, and Joseph Rosen, "Compressive multiple view projection incoherent holography," Opt. Express 19, 6109-6118 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, Introduction to Fourier optics, 3rd Ed., (Roberts and Company Publishers, 2005).
  2. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48(34), H120–H136 (2009). [CrossRef] [PubMed]
  3. Y. Li, D. Abookasis, and J. Rosen, “Computer-generated holograms of three-dimensional realistic objects recorded without wave interference,” Appl. Opt. 40(17), 2864–2870 (2001). [CrossRef]
  4. D. Abookasis and J. Rosen, “Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints,” J. Opt. Soc. Am. A 20(8), 1537–1545 (2003). [CrossRef]
  5. Y. Sando, M. Itoh, and T. Yatagai, “Holographic three-dimensional display synthesized from three-dimensional fourier spectra of real existing objects,” Opt. Lett. 28(24), 2518–2520 (2003). [CrossRef] [PubMed]
  6. B. Katz, N. T. Shaked, and J. Rosen, “Synthesizing computer generated holograms with reduced number of perspective projections,” Opt. Express 15(20), 13250–13255 (2007). [CrossRef] [PubMed]
  7. N. T. Shaked and J. Rosen, “Modified Fresnel computer-generated hologram directly recorded by multiple-viewpoint projections,” Appl. Opt. 47(19), D21–D27 (2008). [CrossRef] [PubMed]
  8. N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Express 15(9), 5754–5760 (2007). [CrossRef] [PubMed]
  9. N. Chen, J.-H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18(3), 2152–2167 (2010). [CrossRef] [PubMed]
  10. G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, “Imaging properties of scanning holographic microscopy,” J. Opt. Soc. Am. A 17(3), 380–390 (2000). [CrossRef]
  11. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007). [CrossRef] [PubMed]
  12. Y. Rivenson and A. Stern, “Compressed imaging with separable sensing operator,” IEEE Signal Process. Lett. 16(6), 449–452 (2009). [CrossRef]
  13. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). [CrossRef]
  14. E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006). [CrossRef]
  15. http://sites.google.com/site/igorcarron2/compressedsensinghardware .
  16. A. Stern, “Compressed imaging system with linear sensors,” Opt. Lett. 32(21), 3077–3079 (2007). [CrossRef] [PubMed]
  17. M. Lustig, “Sparse MRI,” Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ., Palo Alto, CA, 2008.
  18. S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009). [CrossRef]
  19. A. Bourquard, F. Aguet, and M. Unser, “Optical imaging using binary sensors,” Opt. Express 18(5), 4876–4888 (2010). [CrossRef] [PubMed]
  20. Y. Rivenson, A. Stern, and B. Javidi, “Single exposure super-resolution compressive imaging by double phase encoding,” Opt. Express 18(14), 15094–15103 (2010). [CrossRef] [PubMed]
  21. Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel Holography,” Disp. Tech, Journalism 506–509(10), 6 (2010).
  22. Y. Rivenson, A. Stern, and J. Rosen, “Compressive Sensing Approach for Reducing the Number of Exposures in Multiple View Projection Holography,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FThM2.
  23. J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007). [CrossRef] [PubMed]
  24. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009). [CrossRef] [PubMed]
  25. C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49(19), E67–E82 (2010). [CrossRef] [PubMed]
  26. K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt. 49(34), H1–H10 (2010). [CrossRef] [PubMed]
  27. X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography,” J. Opt. Soc. Am. A 27(7), 1630–1637 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited