OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 4 — May. 4, 2011

Design of isoplanatic aspheric monofocal intraocular lenses

Sergio Barbero, Susana Marcos, Javier Montejo, and Carlos Dorronsoro  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6215-6230 (2011)
http://dx.doi.org/10.1364/OE.19.006215


View Full Text Article

Enhanced HTML    Acrobat PDF (1472 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new and complete methodology of monofocal intraocular lens (IOL) design is presented aiming at isoplanatism, i.e. IOLs that provide the eye with optimized optical quality over a wide field of view (typically in a range of ten degrees). The methodology uses a merit function considering dimensional and biomechanical constraints, and a geometrical optical quality metric that is evaluated simultaneously at different field angles. As an example, we present new isoplanatic designs based on different commercial IOL platforms. Aspheric isoplanatic designs improve peripheral quality over current aspheric IOLs. Also, isoplanatic designs provide more stable optical quality across the field and across pupil diameter.

© 2011 OSA

OCIS Codes
(220.3620) Optical design and fabrication : Lens system design
(220.4830) Optical design and fabrication : Systems design
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: December 9, 2010
Revised Manuscript: February 9, 2011
Manuscript Accepted: March 6, 2011
Published: March 18, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Sergio Barbero, Susana Marcos, Javier Montejo, and Carlos Dorronsoro, "Design of isoplanatic aspheric monofocal intraocular lenses," Opt. Express 19, 6215-6230 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-7-6215


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Barbero and S. Marcos, “Analytical tools for customized design of monofocal intraocular lenses,” Opt. Express 15(14), 8576–8591 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8576 . [CrossRef] [PubMed]
  2. S. Norrby, P. Artal, P. A. Piers, and M. Van der Mooren, Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations ” US Patent 6,609,793.
  3. M. Gerlach and C. Lesage, “Aspheric intraocular lens and method for designing such IOL” WO Patent 2007/128423.
  4. G. E. Altmann and G. Altmann, “Aspheric lens and lens family” WO Patent 2005/203619.
  5. R. B. Rabbetts, Bennett & Rabbetts' clinical visual optics (Elsevier/Butterworth Heinemann, Edinburgh; New York, 2007).
  6. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001). [CrossRef] [PubMed]
  7. W. N. Charman and D. A. Atchison, “Decentred optical axes and aberrations along principal visual field meridians,” Vision Res. 49(14), 1869–1876 (2009). [CrossRef] [PubMed]
  8. R. Navarro, E. Moreno, and C. Dorronsoro, “Monochromatic aberrations and point-spread functions of the human eye across the visual field,” J. Opt. Soc. Am. A 15(9), 2522–2529 (1998). [CrossRef]
  9. G. Smith and C. W. Lu, “Peripheral power errors and astigmatism of eyes corrected with intraocular lenses,” Optom. Vis. Sci. 68(1), 12–21 (1991). [CrossRef] [PubMed]
  10. J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32(4), 406–408 (2007). [CrossRef] [PubMed]
  11. D. A. Atchison, “3rd-Order Aberrations Of Pseudophakic Eyes,” Oph. Phy. Opt 9(2), 205–211 (1989). [CrossRef]
  12. D. A. Atchison, “Optical design of intraocular lenses. II. Off-axis performance,” Optom. Vis. Sci. 66(9), 579–590 (1989). [CrossRef] [PubMed]
  13. S. Aoshima, T. Nagata, and A. Minakata, “Optical characteristics of oblique incident rays in pseudophakic eyes,” J. Cataract Refract. Surg. 30(2), 471–477 (2004). [CrossRef] [PubMed]
  14. R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003). [CrossRef] [PubMed]
  15. P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernández, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010). [CrossRef] [PubMed]
  16. J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006). [CrossRef] [PubMed]
  17. I. Gontijo, A. Ossipov, and T. R. Paul, “Optimizing intraocular lens” WO Patent 2009/142961.
  18. D. T. Azar, Intraocular lenses in cataract and refractive surgery (Saunders, Philadelphia, 2001).
  19. S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007). [CrossRef] [PubMed]
  20. C. W. Lu and G. Smith, “The Aspherizing Of Intraocular Lenses,” Oph. Phy. Opt. 10(1), 54–66 (1990). [CrossRef]
  21. C. Pagnoulle, S. Nolet De Brauwere Van, C. R. M. Pagnoulle, and S. T. Nolet De Brauwere Van, “Polymer composition for an intraocular lens” WO Patent 2006/063994.
  22. S. R. Nanushyan, I. Valunin, and E. J. Alexeeva, “High refractive index silicone for use in intraocular lens” US Patent 6432137.
  23. C. Freeman, D. L. Jinkerson, M. Karakelle, A. R. Leboeuf, and A. Leboeuf, “High refractive index ophthalmic device materials” WO Patent WO9953347.
  24. S. Q. Zhou, J. C. Sy, M. A. Berteig, and T. P. Richards, “High refractive index silicone compositions” US Patent 5444106.
  25. S. Barbero, S. Marcos, C. Dorronsoro, J. Montejo, and P. Salazar, “Procedimiento para elaborar una lente intraocular monofocal asferica isoplanática y lente obtenida empleando dicho procedimiento,” Spanish patent application P201030855.
  26. S. Barbero, “Refractive power of a multilayer rotationally symmetric model of the human cornea and tear film,” J. Opt. Soc. Am. A 23(7), 1578–1585 (2006). [CrossRef]
  27. K. Kriechbaum, O. Findl, P. R. Preussner, C. Köppl, J. Wahl, and W. Drexler, “Determining postoperative anterior chamber depth,” J. Cataract Refract. Surg. 29(11), 2122–2126 (2003). [CrossRef] [PubMed]
  28. D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005). [CrossRef] [PubMed]
  29. T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optom. Vis. Sci. 71(9), 573–579 (1994). [CrossRef] [PubMed]
  30. L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 288–298 (2004). [CrossRef] [PubMed]
  31. D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006). [CrossRef] [PubMed]
  32. T. Olsen, “Prediction of the effective postoperative (intraocular lens) anterior chamber depth,” J. Cataract Refract. Surg. 32(3), 419–424 (2006). [CrossRef] [PubMed]
  33. G. W. Forbes, “Optical system assessment for design: numerical ray tracing in the Gaussian pupil,” J. Opt. Soc. Am. A 5(11), 1943–1956 (1988). [CrossRef]
  34. D. A. Atchison, “Optical design of intraocular lenses. I. On-axis performance,” Optom. Vis. Sci. 66(8), 492–506 (1989). [CrossRef] [PubMed]
  35. S. S. Lane, P. Burgi, G. S. Milios, M. W. Orchowski, M. Vaughan, and E. Schwarte, “Comparison of the biomechanical behavior of foldable intraocular lenses,” J. Cataract Refract. Surg. 30(11), 2397–2402 (2004). [CrossRef] [PubMed]
  36. X. Hong, J. Xie, and et. al., “Intraocular lens,” (2006).
  37. G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005). [CrossRef] [PubMed]
  38. P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2204 . [CrossRef] [PubMed]
  39. J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 322–328 (2004). [CrossRef] [PubMed]
  40. S. Marcos, S. Barbero, and I. Jiménez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21(3), 223–235 (2005). [PubMed]
  41. S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008). [CrossRef]
  42. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997). [CrossRef]
  43. T. Olsen, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 18(2), 125–129 (1992). [PubMed]
  44. O. Pomerantzeff, M. M. Pankratov, and G. J. Wang, “Calculation of an IOL from the wide-angle optical model of the eye,” J. Am. Intraocul. Implant Soc. 11(1), 37–43 (1985). [PubMed]
  45. P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14(18), 8019–8030 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8019 . [CrossRef] [PubMed]
  46. M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refract. Surg. 35(4), 663–671 (2009). [CrossRef] [PubMed]
  47. J. Kumler, “Designing and specifying aspheres for manufacturability,” in Current Developments in Lens Design and Optical Engineering VI(SPIE, San Diego, CA, USA, 2005), pp. 58740C–58749.
  48. A. Y. Anis, “Flexible posterior chanber lens,” US Patent 4880427.
  49. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001). [CrossRef] [PubMed]
  50. A. Patz, “Photocoagulation of retinal, vascular, and macular diseases through intraocular lenses,” Ophthalmology 88(5), 398–406 (1981). [PubMed]
  51. R. M. Kershner, “Retinal image contrast and functional visual performance with aspheric, silicone, and acrylic intraocular lenses. Prospective evaluation,” J. Cataract Refract. Surg. 29(9), 1684–1694 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited