OSA's Digital Library

Energy Express

Energy Express

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs

Jaakko Saarela, Tapio Sorvajärvi, Toni Laurila, and Juha Toivonen  »View Author Affiliations


Optics Express, Vol. 19, Issue S4, pp. A725-A732 (2011)
http://dx.doi.org/10.1364/OE.19.00A725


View Full Text Article

Enhanced HTML    Acrobat PDF (781 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A photoacoustic (PA) sensor has been developed for the detection of nitrogen dioxide (NO2). Ten amplitude-modulated high-power light emitting diodes (LEDs), emitting a total optical power of 9 W at 453 nm, are used to excite the photoacoustic signal in NO2. The LEDs are attached to the circumference of a cylindrical PA cell. The induced longitudinal acoustics waves are detected using two electromechanical film stacks, located at the ends of the cell. Background signal cancelation is achieved by using phase-sensitive detection of the difference signal of the two pressure transducers. The phase-sensitive approach allows for improved dynamic range and sensitivity. A detection limit of 10 parts per billion by volume was achieved for flowing NO2 gas sample in an acquisition time of 2.1 s, corresponding to a minimum detectable absorption coefficient of 1.6 × 10−7 cm−1 Hz−1/2. The developed sensor has potential for compact, light-weight, and low-cost measurement of NO2.

© 2011 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(230.3670) Optical devices : Light-emitting diodes
(300.6380) Spectroscopy : Spectroscopy, modulation
(300.6430) Spectroscopy : Spectroscopy, photothermal
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: April 14, 2011
Revised Manuscript: May 18, 2011
Manuscript Accepted: May 19, 2011
Published: May 26, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Jaakko Saarela, Tapio Sorvajärvi, Toni Laurila, and Juha Toivonen, "Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs," Opt. Express 19, A725-A732 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S4-A725


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Robert E. Krieger Publishing Company, 1980).
  2. “Our Nation’s Air–Status and Trends through 2008,” Tech. Rep. , U.S. Environmental Protection Agency (2010).
  3. J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, “Real-time measurements of nitrogen oxide emissions from in-use New York City Transit buses using a chase vehicle,” Environ. Sci. Technol. 39, 7991–8000 (2005). [CrossRef] [PubMed]
  4. P. C. Claspy, C. Ha, and Y.-H. Pao, “Optoacoustic detection of NO2 using a pulsed dye laser,” Appl. Opt. 16, 2972–2973 (1977). [CrossRef] [PubMed]
  5. J. Saarela, J. Sand, T. Sorvajrvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010). [CrossRef]
  6. A. Manninen, J. Sand, J. Saarela, T. Sorvajärvi, J. Toivonen, and R. Hernberg, “Electromechanical film as a photoacoustic transducer,” Opt. Express 17, 16994–16999 (2009). [CrossRef] [PubMed]
  7. N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010). [CrossRef]
  8. R. Bartlome, M. Kaučikas, and M. W. Sigrist, “Modulated resonant versus pulsed resonant photoacoustics intrace gas detection,” Appl. Phys. B 96, 561–566 (2009). [CrossRef]
  9. V. Slezak, “High-precision pulsed photoacoustic spectroscopy in NO2-N2,” Appl. Phys. B: Lasers Opt. 73, 751–755 (2001). [CrossRef]
  10. V. Slezak, G. Santiago, and A. L. Peuriot, “Photoacoustic detection of NO2 traces with CW and pulsed green lasers,” Opt. Lasers Eng. 40, 33–41 (2003). [CrossRef]
  11. H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36, 481–483 (2011). [CrossRef] [PubMed]
  12. J. Kalkman and H. van Kesteren, “Relaxation effects and high sensitivity photoacoustic detection of NO2 with a blue laser diode,” Appl. Phys. B: Lasers Opt. 90, 197–200 (2008). [CrossRef]
  13. M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006). [CrossRef] [PubMed]
  14. J. Lima, H. Vargas, A. Mikls, M. Angelmahr, and P. Hess, “Photoacoustic detection of NO2 and N2O using quantum cascade lasers,” Appl. Phys. B: Lasers Opt. 85, 279–284 (2006). [CrossRef]
  15. R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010). [CrossRef]
  16. G. D. Santiago, M. G. Gonzalez, A. L. Peuriot, F. Gonzalez, and V. B. Slezak, “Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO2,” Rev. Sci. Instrum. 77, 023108 (2006). [CrossRef]
  17. K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003). [CrossRef]
  18. V. Sivakumaran, K. P. Subramanian, and V. Kumar, “Self-quenching and zero-pressure lifetime studies of NO2 at 465–490, 423–462 and 399–416 nm,” J. Quant. Spectrosc. Radiat. Transf. 69, 525–534 (2001). [CrossRef]
  19. R. A. Gangi and L. Burnelle, “Electronic structure and electronic spectrum of nitrogen dioxide. III Spectral interpretation,” J. Chem. Phys. 55, 851–856 (1971). [CrossRef]
  20. C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98, 7837–7843 (1994). [CrossRef]
  21. A. Manninen, “Pulsed Laser Spectroscopy: Bioaerosol Fluorescence and Gas-Phase Photoacoustics,” Ph.D. thesis, Tampere University of Technology (2009).
  22. M. Paajanen, J. Lekkala, and K. Kirjavainen, “Electromechanical film (EMFi)–a new multipurpose electret material,” Sens. Actuators , A 84, 95–102 (2000). [CrossRef]
  23. Y.-H. Pao, P. C. Claspy, C. F. j. Dewey, J. A. Gelbwachs, P. L. Kelley, L. B. Kreuzer, M. B. Robin, A. Rosencwaig, J. D. Stettler, and N. M. Witiriol, Optoacoustic Spectroscopy and Detection (Academic Press, Inc., 1977).
  24. A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001). [CrossRef]
  25. A. Kosterev, Y. Bakhirkin, F. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, “Photoacoustic phase shift as a chemically selective spectroscopic parameter,” Appl. Phys. B: Lasers Opt. 78, 673–676 (2004). [CrossRef]
  26. G. Z. Angeli, Z. Bozoki, A. Miklos, A. Lorincz, A. Thony, and M. W. Sigrist, “Design and characterization of a windowless resonant photoacoustic chamber equipped with resonance locking circuitry,” Rev. Sci. Instrum. 62, 810–813 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited