OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Mass-specific scattering cross sections of suspended sediments and aggregates: theoretical limits and applications

Robert H. Stavn  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 201-219 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1202 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectral mass-specific scattering cross section σ[PIM](λ) is most important for the remote sensing inversion of the concentration of suspended mineral matter in the coastal ocean. This optical parameter is also important in optical theory and therefore the theoretical limits of this parameter are important. There are differing reports in the literature on the magnitude of σ[PIM](λ) and its spectral slope in different coastal ocean systems. To account for and predict these differences, I have applied a model of the size distribution of primary suspended mineral particles and aggregates of these particles to theoretical calculations of σ[PIM](λ). I utilized a model of mineral particle aggregates by Khelifa and Hill [Khelifa, A. and P.S. Hill, J. Hydraul. Res. 44, 390 (2006)] and Latimer's optical model of aggregates [Latimer, P., Appl. Opt. 24, 3231, (1985)]. I have been able to account for the variations in magnitude and spectral slope of σ[PIM](λ). This analysis will apply to not only inverting the concentration of suspended mineral matter but also provides the basis for inverting the processes of coagulation and aggregation of primary mineral particles in determining sedimentation rates, budgets, etc.

© 2011 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles
(010.4458) Atmospheric and oceanic optics : Oceanic scattering

ToC Category:

Original Manuscript: September 20, 2011
Revised Manuscript: November 18, 2011
Manuscript Accepted: December 1, 2011
Published: December 20, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Robert H. Stavn, "Mass-specific scattering cross sections of suspended sediments and aggregates: theoretical limits and applications," Opt. Express 20, 201-219 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Gould and R. A. Arnone, “Three-dimensional modelling of inherent optical properties in a coastal environment: coupling ocean colour imagery and in situ measurements,” Int. J. Remote Sens. 19(11), 2141–2159 (1998). [CrossRef]
  2. R. W. Gould, R. A. Arnone, and M. Sydor, “Absorption, scattering, and remote-sensing reflectance relationships in coastal waters: testing a new inversion algorithm,” J. Coast. Res. 17(2), 328–341 (2001).
  3. R. W. Gould, Jr., R.H, Stavn, M. S. Twardowski, and G.M. Lamela. “Partitioning optical properties into organic and inorganic components from ocean color imagery,” in Ocean Optics XVI, Santa Fe, New Mexico, USA, S. Ackleson and C. Trees, eds. (Office of Naval Research, 2002) CDROM.
  4. M. Sydor, R. W. Gould, R. A. Arnone, V. I. Haltrin, and W. Goode, “Uniqueness in remote sensing of the inherent optical properties of ocean water,” Appl. Opt. 43(10), 2156–2162 (2004). [CrossRef] [PubMed]
  5. J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100(C7), 13,333–13,344 (1995). [CrossRef]
  6. R. H. Stavn and S. J. Richter, “Biogeo-optics: particle optical properties and the partitioning of the spectral scattering coefficient of ocean waters,” Appl. Opt. 47(14), 2660–2679 (2008). [CrossRef] [PubMed]
  7. R. H. Stavn and T. R. Keen, “Suspended minerogenic particle distributions in high-energy coastal environments: Optical implications,” J. Geophys. Res. 109(C5), C05005 (2004), doi: (Oceans). [CrossRef]
  8. R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, and D. V. Pozdnayakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press 1995).
  9. E. A. Laws and J. W. Archie, “Appropriate use of regression analysis in marine biology,” Mar. Biol. 65(1), 13–16 (1981). [CrossRef]
  10. R. A. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48(6), 2377–2391 (2003). [CrossRef]
  11. I. N. Sokolik and O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104(D8), 9423–9444 (1999). [CrossRef]
  12. E. Boss, W. Slade, and P. Hill, “Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass,” Opt. Express 17(11), 9408–9420 (2009). [CrossRef] [PubMed]
  13. R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8C08024), C08024 (2010), doi:. [CrossRef] [PubMed]
  14. H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75(15), 2822–2830 (1970). [CrossRef]
  15. M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water (Academic/Elsevier 2007).
  16. C. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).
  17. F. Peng, S. W. Effler, D. O’Donnell, M. G. Perkins, and A. Weidemann, “Role of minerogenic particles in light scattering in lakes and a river in central New York,” Appl. Opt. 46(26), 6577–6594 (2007). [CrossRef] [PubMed]
  18. F. Peng, S. Effler, D. O'Donnell, A. Weidemann, and M. T. Auer, “Characterization of minerogenic particles in support of modeling light scattering in Lake Superior through a two-component approach,” Limnol. Oceanogr. 54(4), 1369–1381 (2009). [CrossRef]
  19. M. Stramska, D. Stramski, M. Cichocka, A. Cieplak, and S. B. Wozniak, “Effects of atmospheric particles from Southern California on the optical properties of seawater,” J. Geophys. Res. 113(C8), C08037 (2008), doi:. [CrossRef]
  20. D. Stramski, S. B. Wozniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004). [CrossRef]
  21. D. Stramski, M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52(6), 2418–2433 (2007). [CrossRef]
  22. D. Risović and M. Martinis, “The role of coagulation and sedimentation mechanisms in the two-component model of sea-particle size distribution,” Fizika B: J. Exp. Theoret. Phys. (Zagreb, Croatia) 2, 103–118 (1994).
  23. M. Jonasz and G. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41(4), 744–754 (1996). [CrossRef]
  24. D. Risović, “Two component model of sea particle size distribution,” Deep Sea Res. Part I Oceanogr. Res. Pap. 40(7), 1459–1473 (1993). [CrossRef]
  25. J. W. Campbell, “The lognormal distribution as a model for bio-optical variability in the sea,” J. Geophys. Res. 100(C7), 13237–13254 (1995). [CrossRef]
  26. O. Ulloa, S. Sathyendranath, T. Platt, and R. A. Quinones, “Light scattering by marine heterotrophic bacteria,” J. Geophys. Res. 97(C6), 9619–9629 (1992). [CrossRef]
  27. K. Mahmood, “Lognormal size distribution of particulate matter,” J. Sediment. Petrol. 43(4), 1161–1166 (1973).
  28. D. Deirmendjian, “Scattering and polarizaton properites of water clouds and hazes in the visible and infrared,” Appl. Opt. 3(2), 187–196 (1964). [CrossRef]
  29. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elesevier 1969).
  30. W. Zdunkowski, T. Trautman, and A. Bott, Radiation in the Atmosphere: A Course in Theoretical Meterology. (Cambridge 2007).
  31. P. Latimer, “Experimental tests of a theoretical method for predicting light scattering by aggregates,” Appl. Opt. 24(19), 3231–3239 (1985). [CrossRef] [PubMed]
  32. A. Khelifa and P. S. Hill, “Models for effective density and settling velocity of flocs,” J. Hydraul. Res. 44(3), 390–401 (2006). [CrossRef]
  33. D. Risović and M. Martinis, “Fractal dimensions of suspended particles in seawater,” J. Colloid Interface Sci. 182(1), 199–203 (1996). [CrossRef]
  34. A. Morel, “Optics of marine particles and marine optics,” in Particle Size Analysis, S. Demers, ed. (Springer Verlag, 1991), pp. 141–188.
  35. I. N. McCave, “Local and global aspects of the bottom nepheloid layers in the world ocean,” Neth. J. Sea Res. 20(2-3), 167–181 (1986). [CrossRef]
  36. P. S. Hill, G. Voulgaris, and J. H. Trowbridge, “Controls on floc size in a continental shelf bottom boundary layer,” J. Geophys. Res. 106(C5), 9543–9549 (2001). [CrossRef]
  37. D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci. 67(1-2), 219–230 (2006). [CrossRef]
  38. D. M. McKee and A. Cunningham, “Identification and characterization of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents,” Estuar. Coast. Shelf Sci. 68(1-2), 305–316 (2006). [CrossRef]
  39. R. W. Gould, R. A. Arnone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38(12), 2377–2383 (1999). [CrossRef] [PubMed]
  40. M. Sydor and R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36(27), 6905–6912 (1997). [CrossRef] [PubMed]
  41. D. M. Etter, Fortran 77: with Numerical Methods for Engineers and Scientists (Benjamin/Cummings 1992).
  42. O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Enviorn. Geol. 34(4), 257–269 (1998). [CrossRef]
  43. J. Buffle and G. G. Leppard, “Characterization of aquatic colloids and macromolecules. 1. structure and behavior of colloidal material,” Environ. Sci. Technol. 29(9), 2169–2175 (1995). [CrossRef]
  44. C. L. Gallegos and R. G. Menzel, “Submicron size distribution of inorganic suspended solids in turbid waters by photon correlation spectroscopy,” Water Resour. Res. 23(4), 596–602 (1987). [CrossRef]
  45. Q. Jiang and B. E. Logan, “Fractal dimensions of aggregates determined from steady-state size distributions,” Environ. Sci. Technol. 25(12), 2031–2038 (1991). [CrossRef]
  46. T. A. Witten and M. E. Cates, “Tenuous structures from disorderly growth processes,” Science 232(4758), 1607–1612 (1986). [CrossRef] [PubMed]
  47. L. J. Doyle and T. N. Sparks, “Sediments of the Mississippi, Alabama, and Florida (MAFLA) continental shelf,” J. Sediment. Petrol. 50, 905–916 (1980).
  48. W.G. Egan and T.W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic 1979).
  49. P. Fleischer, “Mineralogy and sedimentation history, Santa Barbara basin, California,” J. Sediment. Petrol. 42(1), 49–58 (1972).
  50. A. G. Johnson and J. T. Kelley, “Temporal, spatial, and textural variation in the mineralogy of Mississippi river suspended sediment,” J. Sediment. Petrol. 54, 67–72 (1984).
  51. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley 1983).
  52. J. B. Austin, “Methods of representing distribution of particle size,” Ind. Eng. Chem. Anal. Ed. 11(6), 334–339 (1939). [CrossRef]
  53. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996). [CrossRef]
  54. C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Remote Sens. 24(19), 3791–3806 (2003). [CrossRef]
  55. A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103(C11), 24955–24968 (1998). [CrossRef]
  56. H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46(6), 1438–1454 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited