OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Picosecond time scale modification of forward scattered light induced by absorption inside particles

Myriam Kervella, Françoix-Xavier d’Abzac, François Hache, Laurent Hespel, and Thibault Dartigalongue  »View Author Affiliations


Optics Express, Vol. 20, Issue 1, pp. 32-41 (2012)
http://dx.doi.org/10.1364/OE.20.000032


View Full Text Article

Enhanced HTML    Acrobat PDF (1201 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The aim of this work is to evaluate the influence of absorption processes on the Time Of Flight (TOF) of the light scattered out of a thick medium in the forward direction. We use a Monte-Carlo simulation with temporal phase function and Debye modes. The main result of our study is that absorption inside the particle induces a decrease of the TOF on a picosecond time scale, measurable with a femtosecond laser apparatus. This decrease, which exhibits a neat sensitivity to the absorption coefficient of particles, could provide an efficient way to measure this absorption.

© 2011 OSA

OCIS Codes
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles
(290.7050) Scattering : Turbid media
(320.7120) Ultrafast optics : Ultrafast phenomena

ToC Category:
Scattering

History
Original Manuscript: September 16, 2011
Revised Manuscript: October 28, 2011
Manuscript Accepted: October 28, 2011
Published: December 20, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Myriam Kervella, Françoix-Xavier d’Abzac, François Hache, Laurent Hespel, and Thibault Dartigalongue, "Picosecond time scale modification of forward scattered light induced by absorption inside particles," Opt. Express 20, 32-41 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-1-32


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).
  2. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).
  3. C. Calba, L. Méès, C. Rozé, and T. Girasole, “Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments,” J. Opt. Soc. Am. A25(7), 1541–1550 (2008). [CrossRef] [PubMed]
  4. M. Barthélémy, N. Rivière, L. Hespel, and T. Dartigalongue, “Pump probe experiment for high scattering media diagnostics,” in SPIE Optics and Photonics; San Diego, CA, USA, 2008; Conference Proceedings; Vol. 7065.
  5. A. M. Pena, T. Boulesteix, T. Dartigalongue, and M. C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens I and IV,” J. Am. Chem. Soc.127(29), 10314–10322 (2005). [CrossRef] [PubMed]
  6. D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006). [CrossRef] [PubMed]
  7. S. A. Malinovskaya and V. S. Malinovsky, “Chirped-pulse adiabatic control in coherent anti-Stokes Raman scattering for imaging of biological structure and dynamics,” Opt. Lett.32(6), 707–709 (2007). [CrossRef] [PubMed]
  8. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science253(5021), 769–771 (1991). [CrossRef] [PubMed]
  9. T. Gustavsson, A. Sharonov, and D. Markovitsi, “Thymine, thymidine and thimidine 5′-monophosphate studied by femtosecond fluorescence upconversion spectroscopy,” Chem. Phys. Lett.351(3-4), 195–200 (2002). [CrossRef]
  10. W. Tan, Y. Yang, J. Si, J. Tong, W. Yi, F. Chen, and X. Hou, “Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass,” J. Appl. Phys.107(4), 043104 (2010). [CrossRef]
  11. D. Sedarsky, E. Berrocal, and M. Linne, “Quantitative image contrast enhancement in time-gated transillumination of scattering media,” Opt. Express19(3), 1866–1883 (2011). [CrossRef] [PubMed]
  12. L. Wang, X. Liang, P. A. Galland, P. P. Ho, and R. R. Alfano, “Detection of objects hidden in highly scattering media using time-gated imaging methods,” in Optical Sensing, Imaging, and Manipulation for Biological and Biomedical Applications, Conference SPIE Proceeding, Vol. 4082 (2000).
  13. M. Barthélémy, L. Hespel, N. Rivière, B. Chatel, and T. Dartigalongue, “Pump probe experiment for optical diagnosis of very thick scattering media,” Aerospace Lab J.1, 155–200 (2009).
  14. K. M. Yoo, G. C. Tang, and R. R. Alfano, “Coherent backscattering of light from biological tissues,” Appl. Opt.29(22), 3237–3239 (1990). [CrossRef] [PubMed]
  15. C. Das, A. Trivedi, K. Mitra, and T. Vo-Dinh, “Short pulse laser propagation through tissues for biomedical imaging,” J. Phys. D Appl. Phys.36(14), 1714–1721 (2003). [CrossRef]
  16. C. J. Lee, P. J. van der Slot, and K. J. Boller, “Using ultra-short pulses to determine particle size and density distributions,” Opt. Express15(19), 12483–12497 (2007). [CrossRef] [PubMed]
  17. W. Long and D. Burns, “Particle sizing and optical constant measurement in granular samples using statistical descriptors of photon time-of-flight distributions,” Anal. Chim. Acta434(1), 113–123 (2001). [CrossRef]
  18. C. Gributs and D. Burns, “Multiresolution analysis for quantification of optical properties in scattering media using pulsed photon time-of-flight measurements,” Anal. Chim. Acta490(1-2), 185–195 (2003). [CrossRef]
  19. L. Méès, G. Gréhan, and G. Gouesbet, “Time-resolved scattering diagram for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun.194(1-3), 59–65 (2001). [CrossRef]
  20. A. E. Hovenac and J. A. Lock, “Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series,” J. Opt. Soc. Am. A9(5), 781–795 (1992). [CrossRef]
  21. N. Rivière, M. Barthélémy, T. Dartigalongue, and L. Hespel, “Modeling of femtosecond pulse propagation through dense scattering media,” Proc. SPIE7065, 70650X, 70650X-9 (2008). [CrossRef]
  22. Q. Fu and W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt.40(9), 1354–1361 (2001). [CrossRef] [PubMed]
  23. J. Shen and H. Wang, “Calculation of Debye series expansion of light scattering,” Appl. Opt.49(13), 2422–2428 (2010). [CrossRef]
  24. X. Wang, L. V. Wang, C.-W. Sun, and C.-C. Yang, “Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments,” J. Biomed. Opt.8(4), 608–617 (2003). [CrossRef] [PubMed]
  25. S. Avrillier, E. Tinet, and J. M. Tualle, “Fast semianalytical monte carlo simulation for time resolved light propagation in turbid media,” J. Opt. Soc. Am. A9, 1903–1915 (1996).
  26. C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra short pulse and a strongly scattering medium: the case of large particles,” Opt. Commun.265(2), 373–382 (2006). [CrossRef]
  27. F. Onofri, “Critical angle refractometry for simultaneous measurement of particles in flow: size and relative refractive index,” Part. Part. Syst. Charact.16(3), 119–127 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited