OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Manipulation of micro-particles by flexible polymer-based optically-induced dielectrophoretic devices

Shu-Ju Lin, Shih-Hsun Hung, Jun-Yuan Jeng, Tzung-Fang Guo, and Gwo-Bin Lee  »View Author Affiliations


Optics Express, Vol. 20, Issue 1, pp. 583-592 (2012)
http://dx.doi.org/10.1364/OE.20.000583


View Full Text Article

Enhanced HTML    Acrobat PDF (2078 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study presents a novel technology to manipulate micro-particles with the assistance from flexible polymer-based optically-induced dielectrophoretic (ODEP) devices. Bending the flexible ODEP devices downwards or upwards to create convex or concave curvatures, respectively, enables the more effective separation or collection of micro-particles with different diameters. The travel distances of the polystyrene beads of 40 μm diameter, as induced by the projected light in a given time period was increased by ~100%, which were 43.0 ± 5.0 and 84.6 ± 4.0 μm for flat and convex ODEP devices, respectively. A rapid separation or collection of micro-particles can be achieved with the assistance of gravity because the falling polystyrene beads followed the inclination of the downward and upward bent ODEP devices.

© 2011 OSA

OCIS Codes
(160.5140) Materials : Photoconductive materials
(250.2080) Optoelectronics : Polymer active devices
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: October 14, 2011
Revised Manuscript: November 23, 2011
Manuscript Accepted: November 26, 2011
Published: December 22, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Shu-Ju Lin, Shih-Hsun Hung, Jun-Yuan Jeng, Tzung-Fang Guo, and Gwo-Bin Lee, "Manipulation of micro-particles by flexible polymer-based optically-induced dielectrophoretic devices," Opt. Express 20, 583-592 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-1-583


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys.27(7), 1571–1574 (1994). [CrossRef]
  2. R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol.15(10), 426–432 (1997). [CrossRef] [PubMed]
  3. R. Krupke, S. Linden, M. Rapp, and F. Hennrich, “Thin films of metallic carbon nanotubes prepared by dielectrophoresis,” Adv. Mater. (Deerfield Beach Fla.)18(11), 1468–1470 (2006). [CrossRef]
  4. A. J. de Mello and N. Beard, “Dealing with real samples: sample pre-treatment in microfluidic systems,” Lab Chip3(1), 11N–19N (2003). [CrossRef] [PubMed]
  5. E. W. H. Jager, O. Inganäs, and I. Lundström, “Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation,” Science288(5475), 2335–2338 (2000). [CrossRef] [PubMed]
  6. J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng.8(1), 425–454 (2006). [CrossRef] [PubMed]
  7. P. Gascoyne, J. Satayavivad, and M. Ruchirawat, “Microfluidic approaches to malaria detection,” Acta Trop.89(3), 357–369 (2004). [CrossRef] [PubMed]
  8. C. Mio and D. W. M. Marr, “Optical trapping for the manipulation of colloidal particles,” Adv. Mater. (Deerfield Beach Fla.)12(12), 917–920 (2000). [CrossRef]
  9. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005). [CrossRef] [PubMed]
  10. M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems,” Electrophoresis23(16), 2569–2582 (2002). [CrossRef] [PubMed]
  11. W. Y. Lin, Y. H. Lin, and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces,” Microfluid. Nanofluid.8(2), 217–229 (2010). [CrossRef]
  12. A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst.16(3), 491–499 (2007). [CrossRef]
  13. F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater.13(1), 85–88 (2003). [CrossRef]
  14. H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science280(5370), 1741–1744 (1998). [CrossRef] [PubMed]
  15. W. Wang, Y. H. Lin, R. S. Guan, T. C. Wen, T. F. Guo, and G. B. Lee, “Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles,” Opt. Express17(20), 17603–17613 (2009). [CrossRef] [PubMed]
  16. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett.86, 063502 (2005).
  17. T. B. Jones, Electromechanics of Particles (Cambridge University Press, 1975).
  18. T. Guo, T. Wen, G. Lvovichpakhomov, X. Chin, S. Liou, P. Yeh, and C. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films516(10), 3138–3142 (2008). [CrossRef]
  19. W. Wang, Y. H. Lin, T. C. Wen, T. F. Guo, and G. B. Lee, “Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices,” Appl. Phys. Lett.96, 113302 (2010).
  20. D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, and Z. N. Bao, “Stretchable organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)23(15), 1771–1775 (2011). [CrossRef] [PubMed]
  21. C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices9(4), 533–543 (2007). [CrossRef] [PubMed]
  22. G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. (Deerfield Beach Fla.)4(2), 116–118 (1992). [CrossRef]
  23. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett.75(12), 1679–1681 (1999). [CrossRef]
  24. J. S. Huang, G. Li, and Y. Yang, “A semi-transparent plastic solar cell fabricated by a lamination process,” Adv. Mater. (Deerfield Beach Fla.)20(3), 415–419 (2008). [CrossRef]
  25. V. Dyakonov, “Mechanisms controlling the efficiency of polymer solar cells,” Appl. Phys. A-Mater.79, 21–25 (2004).
  26. G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater.4(11), 864–868 (2005). [CrossRef]
  27. H. A. Pohl, Dielectrophoresis (Cambridge University, 1978).
  28. J. L. Billeter and R. A. Pelcovits, “Defect configurations and dynamical behavior in a gay-berne nematic emulsion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(11 Pt A), 711–717 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (43220 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited