OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Abnormal pixel detection using sum-of-projections symmetry in cone beam computed tomography

Xiaoquan Yang, Yuanzheng Meng, Hui Gong, Yong Deng, and Qingming Luo  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 11014-11030 (2012)
http://dx.doi.org/10.1364/OE.20.011014


View Full Text Article

Enhanced HTML    Acrobat PDF (10681 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel abnormal pixels (APs) detection approach is proposed to remove artefacts from reconstructed images in cone beam computed tomography (CBCT). This approach is based on the symmetry detection of sum-of-projections (SOP). Because some factors affect the SOP symmetry, we combine dyadic wavelet transform-based singularity detection to extract the APs. Next, the Laplacian solution (LS) method is employed to restore the APs in each projection image. Experimental results demonstrate the efficiency of our approach for different imaging tasks.

© 2012 OSA

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(340.7440) X-ray optics : X-ray imaging

ToC Category:
Image Processing

History
Original Manuscript: December 16, 2011
Revised Manuscript: April 8, 2012
Manuscript Accepted: April 23, 2012
Published: April 27, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Xiaoquan Yang, Yuanzheng Meng, Hui Gong, Yong Deng, and Qingming Luo, "Abnormal pixel detection using sum-of-projections symmetry in cone beam computed tomography," Opt. Express 20, 11014-11030 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-10-11014


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys.53(5), 1337–1349 (2002). [CrossRef] [PubMed]
  2. J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated breast CT: radiation dose and image quality evaluation,” Radiology221(3), 657–667 (2001). [CrossRef] [PubMed]
  3. B. Chen and R. Ning, “Cone-beam volume CT breast imaging: feasibility study,” Med. Phys.29(5), 755–770 (2002). [CrossRef] [PubMed]
  4. F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med.10(10), 1133–1138 (2004). [CrossRef] [PubMed]
  5. C. T. Badea, M. Drangova, D. W. Holdsworth, and G. A. Johnson, “In vivo small-animal imaging using micro-CT and digital subtraction angiography,” Phys. Med. Biol.53(19), 319–350 (2008). [CrossRef] [PubMed]
  6. L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys.36(9), 4007–4014 (2009). [CrossRef] [PubMed]
  7. S. C. Lee, H. K. Kim, I. K. Chun, M. H. Cho, S. Y. Lee, and M. H. Cho, “A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging,” Phys. Med. Biol.48(24), 4173–4185 (2003). [CrossRef] [PubMed]
  8. R. Ning, B. Chen, R. F. Yu, D. Conover, X. Y. Tang, and Y. Ning, “Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation,” IEEE Trans. Med. Imaging19(9), 949–963 (2000). [CrossRef] [PubMed]
  9. D. Prell, Y. Kyriakou, and W. A. Kalender, “Comparison of ring artifact correction methods for flat-detector CT,” Phys. Med. Biol.54(12), 3881–3895 (2009). [CrossRef] [PubMed]
  10. J. Sijbers and A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol.49(14), N247–N253 (2004). [CrossRef] [PubMed]
  11. Y. Kyriakou, D. Prell, and W. A. Kalender, “Ring artifact correction for high-resolution micro CT,” Phys. Med. Biol.54(17), 385–391 (2009). [CrossRef] [PubMed]
  12. X. Tang, R. Ning, R. Yu, and D. Conover, “Cone beam volume CT image artifacts caused by defective cells in x-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys.28(5), 812–825 (2001). [CrossRef] [PubMed]
  13. R. A. Ketcham, “New algorithms for ring artifact removal,” Proc. SPIE6318, 63180O, 63180O-7 (2006). [CrossRef]
  14. J. A. Seibert, J. M. Boone, and K. K. Lindfors, “Flat-field correction technique for digital detectors,” Proc. SPIE3336, 348–354 (1998). [CrossRef]
  15. S. Titarenko, V. Titarenko, A. Kyrieleis, and P. J. Withers, “A ring artifact suppression algorithm based on a priori information,” Appl. Phys. Lett.95(7), 071113 (2009). [CrossRef]
  16. F. Sadi, S. Y. Lee, and M. K. Hasan, “Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter,” Comput. Biol. Med.40(1), 109–118 (2010). [CrossRef] [PubMed]
  17. C. Raven, “Numerical removal of ring artifacts in microtomography,” Rev. Sci. Instrum.69(8), 2978–2980 (1998). [CrossRef]
  18. M. Boin and A. Haibel, “Compensation of ring artefacts in synchrotron tomographic images,” Opt. Express14(25), 12071–12075 (2006). [CrossRef] [PubMed]
  19. B. Münch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and ring artifact removal with combined wavelet--Fourier filtering,” Opt. Express17(10), 8567–8591 (2009). [CrossRef] [PubMed]
  20. A. N. M. Ashrafuzzaman, S. Y. Lee, and M. K. Hasan, “A self-adaptive approach for the detection and correction of stripes in the sinogram: suppression of ring artifacts in CT imaging,” EURASIP J. Adv. Signal Process.2011(1), 183547 (2011). [CrossRef]
  21. E. M. A. Anas, S. Y. Lee, and M. K. Hasan, “Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram,” Phys. Med. Biol.55(22), 6911–6930 (2010). [CrossRef] [PubMed]
  22. K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys.33(6), 1695–1706 (2006). [CrossRef] [PubMed]
  23. M. Defrise and R. Clack, “A Cone-Beam Reconstruction Algorithm Using Shift-Variant Filtering and Cone-Beam Backprojection,” IEEE Trans. Med. Imaging13(1), 186–195 (1994). [CrossRef] [PubMed]
  24. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems (Prentice-Hall, 1997), Chap. 2.
  25. S. R. Deans, The Radon Transform and Some of Its Applications (Dover Publications, Inc., 2007), Chap. 3.
  26. S. Mallat and S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern. Anal.14(7), 710–732 (1992). [CrossRef]
  27. S. Mallat and W. L. Hwang, “Singularity detection and processing with wavelets,” IEEE Trans. Inf. Theory38(2), 617–643 (1992). [CrossRef]
  28. N. F. Law and W. C. Siu, “An efficient computational scheme for the two-dimensional overcomplete wavelet transform,” IEEE Trans. Signal Process.50(11), 2806–2819 (2002). [CrossRef]
  29. S. L. Barna, M. W. Tate, S. M. Gruner, and E. F. Eikenberry, “Calibration procedures for charge-coupled device x-ray detectors,” Rev. Sci. Instrum.70(7), 2927–2934 (1999). [CrossRef]
  30. D. W. Nelms, H. I. Shukla, E. Nixon, J. E. Bayouth, and R. T. Flynn, “Assessment of three dead detector correction methods for cone-beam computed tomography,” Med. Phys.36(10), 4569–4576 (2009). [CrossRef] [PubMed]
  31. A. C. Kak and M. Slaney, Principle of computerized tomographic imaging (IEEE Press, 1988), Chap. 3.
  32. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A1(6), 612–619 (1984). [CrossRef]
  33. X. Q. Yang, Y. Z. Meng, Q. M. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol.18(4), 381–392 (2010). [PubMed]
  34. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol.50(19), 4645–4665 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited