OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Effect of phytoplankton community composition and cell size on absorption properties in eutrophic shallow lakes: field and experimental evidence

Yunlin Zhang, Yan Yin, Mingzhu Wang, and Xiaohan Liu  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 11882-11898 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2031 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated phytoplankton absorption properties of Lake Taihu, in the spring and summer of 2005 and 2006, and for 17 days studied laboratory cultures of Scenedesmus obliquus (chlorophyta) and Microcystis aeruginosa (cyanophyta) to determine the effect of phytoplankton community composition and cell size on the absorption properties. There were significant seasonal differences in phytoplankton community composition and absorption coefficients. In spring, the phytoplankton community was dominated by chlorophyta with large cells, whereas in summer was dominated by cyanophyta with small cells. Phytoplankton absorption coefficients increased significantly from spring to summer, with the increase in chlorophyll a (Chla) concentration. In addition, Chla-specific absorption coefficients increased with the phytoplankton community succession from chlorophyta to cyanophyta. In culture, the cells density of S. obliquus was generally lower than that of M. aeruginosa, and Chla concentrations of S. obliquus were significantly higher than those of M. aeruginosa. Correspondingly, the Chla-specific absorption coefficients of S. obliquus were significantly lower than those of M. aeruginosa. Significant exponential correlations were found between absorption and Chla-specific absorption coefficients and Chla concentration for S. obliquus and M. aeruginosa. In addition, we developed a model to predict absorption and Chla-specific absorption coefficients using Chla concentration and cell size when data from two species was grouped together. Field and experimental results both showed that the Chla-specific absorption coefficients of cyanophyta were significantly higher than those of chlorophyta. The variability in specific absorption can attributed to phytoplankton community composition, cell size and pigment composition. As phytoplankton community composition changed significantly with season in the lake, and as variation in the cell sizes and accessory pigments of the phytoplankton community influenced the Chla-specific absorption coefficient, these factors may be considered explicitly in future improvements to bio-optical algorithms to more accurately estimate Chla concentration, primary production and phytoplankton community composition.

© 2012 OSA

OCIS Codes
(010.7340) Atmospheric and oceanic optics : Water
(170.1420) Medical optics and biotechnology : Biology
(010.1030) Atmospheric and oceanic optics : Absorption
(010.1690) Atmospheric and oceanic optics : Color
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: March 14, 2012
Revised Manuscript: May 2, 2012
Manuscript Accepted: May 4, 2012
Published: May 10, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Yunlin Zhang, Yan Yin, Mingzhu Wang, and Xiaohan Liu, "Effect of phytoplankton community composition and cell size on absorption properties in eutrophic shallow lakes: field and experimental evidence," Opt. Express 20, 11882-11898 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge University Press, 1994).
  2. Y. L. Zhang, M. L. Liu, B. Q. Qin, H. J. van der Woerd, J. S. Li, and Y. L. Li, “Modeling remote-sensing reflectance and retrieving chlorophyll-a concentration in extremely turbid Case-2 waters (Lake Taihu, China),” IEEE Trans. Geosci. Rem. Sens.47(7), 1937–1948 (2009). [CrossRef]
  3. J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles24(3), GB3016 (2010), doi:. [CrossRef]
  4. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt.44(3), 412–422 (2005). [CrossRef] [PubMed]
  5. J. Uitz, Y. Huot, F. Bruyant, M. Babin, and H. Claustre, “Relating phytoplankton photophysiological properties to community structure on large scales,” Limnol. Oceanogr.53(2), 614–630 (2008). [CrossRef]
  6. H. Loisel, B. Lubac, D. Dessailly, L. Duforet-Gaurier, and V. Vantrepotte, “Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach,” Opt. Express18(20), 20949–20959 (2010). [CrossRef] [PubMed]
  7. D. Stramski, A. Sciandra, and H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr.47(2), 392–403 (2002). [CrossRef]
  8. T. Fujiki and S. Taguchi, “Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res.24(9), 859–874 (2002). [CrossRef]
  9. A. Matsuoka, P. Larouche, M. Poulin, W. Vincent, and H. Hattori, “Phytoplankton community adaptation to changing light levels in the southern Beaufort Sea, Canadian Arctic,” Estuar. Coast. Shelf Sci.82(3), 537–546 (2009). [CrossRef]
  10. A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res.28(11), 1375–1393 (1981). [CrossRef]
  11. S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr.32(2), 403–415 (1987). [CrossRef]
  12. E. Millán-Núñez and R. Millán-Núñez, “Specific absorption coefficient and phytoplankton community structure in the Southern Region of the California Current during January 2002,” J. Oceanogr.66(5), 719–730 (2010). [CrossRef]
  13. A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res.109(C1), C11010 (2004). [CrossRef]
  14. J. Toepel, U. Langner, and C. Wilhelm, “Combination of flow cytometry and single cell absorption spectroscopy to study the phytoplankton structure and to calculate the chl a specific absorption coefficients at the taxon level,” J. Phycol.41(6), 1099–1109 (2005). [CrossRef]
  15. C. F. Le, Y. M. Li, Y. Zha, and D. Y. Sun, “Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China,” Hydrobiologia619(1), 27–37 (2009). [CrossRef]
  16. Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res.32(7), 1023–1037 (2010). [CrossRef]
  17. Y. W. Chen, B. Q. Qin, K. Teubner, and M. T. Dokulil, “Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China,” J. Plankton Res.25(4), 445–453 (2003). [CrossRef]
  18. W. Lampert, W. Fleckner, H. Rai, and B. E. Taylor, “Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase,” Limnol. Oceanogr.31(3), 478–490 (1986). [CrossRef]
  19. Z. Ke, P. Xie, and L. Guo, “Controlling factors of spring–summer phytoplankton succession in Lake Taihu (Meiliang Bay, China),” Hydrobiologia607(1), 41–49 (2008). [CrossRef]
  20. C. M. Hu, Z. P. Lee, R. H. Ma, K. Yu, D. Q. Li, and S. L. Shang, “Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res.115(C4), C04002 (2010), doi:. [CrossRef]
  21. H. J. Hu, R. Y. Li, Y. X. Wei, H. Zhu, J. Chen, and Z. Shi, Freshwater algae in China (Shanghai Science and Technology Press, Shanghai (in Chinese), 1980).
  22. B. G. Mitchell, “Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT),” Proc. SPIE1302, 137–148 (1990). [CrossRef]
  23. H. Sosik, “Storage of marine particulate samples for light-absorption measurements,” Limnol. Oceanogr.44(4), 1139–1141 (1999). [CrossRef]
  24. I. Laurion, F. Blouin, and S. Roy, “The quantitative filter technique for measuring phytoplankton absorption: interference by MAAs in the UV waveband,” Limnol. Oceanogr. Methods1(1), 1–9 (2003).
  25. J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr.38(6), 1321–1327 (1993). [CrossRef]
  26. R. Y. Stanier, R. Kunisawa, M. Mandel, and G. Cohen-Bazire, “Purification and properties of unicellular blue-green algae (order Chroococcales),” Bacteriol. Rev.35(2), 171–205 (1971). [PubMed]
  27. S. Tassan and G. M. Ferrari, “A sensitivity analysis of the ‘transmittance-reflectance’ method for measuring light absorption by aquatic particles,” J. Plankton Res.24(8), 757–774 (2002). [CrossRef]
  28. R. Sarada, M. G. Pillai, and G. A. Ravishankar, “Phycocyanin from Spirulina sp.: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin,” Process Biochem.34(8), 795–801 (1999). [CrossRef]
  29. A. Bennett and L. Bogorad, “Complementary chromatic adaptation in a filamentous blue-green alga,” J. Cell Biol.58(2), 419–435 (1973). [CrossRef] [PubMed]
  30. K. Yoshimura, N. Zaitsu, Y. Sekimura, B. Matsushita, T. Fukushima, and A. Imai, “Parameterization of chlorophyll a-specific absorption coefficients and effects of their variations in a highly eutrophic lake: a case study at Lake Kasumigaura, Japan,” Hydrobiologia (to be published), doi: (2012). [CrossRef]
  31. A. Ciotti, M. Lewis, and J. Cullen, “Assessment of the relationship between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr.47(2), 404–417 (2002). [CrossRef]
  32. Z. H. Mao, V. Stuart, D. L. Pan, J. Y. Chen, F. Gong, H. Q. Huang, and Q. K. Zhu, “Effects of phytoplankton species composition on absorption spectra and modelled hyperspectral reflectance,” Ecol. Inform.5(5), 359–366 (2010). [CrossRef]
  33. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res.108(C7), 3211–3230 (2003), doi: . [CrossRef]
  34. A. Matsuoka, V. Hill, Y. Huot, M. Babin, and A. Bricaud, “Seasonal variability in the light absorption properties of western Arctic waters: parameterization of the individual components of absorption for ocean color applications,” J. Geophys. Res.116(C2), C02007 (2011), doi: . [CrossRef]
  35. L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size, and export of large aggregates: a world–ocean analysis,” Limnol. Oceanogr.54(6), 1951–1963 (2009). [CrossRef]
  36. T. L. Richardson and G. A. Jackson, “Small phytoplankton and carbon export from the surface ocean,” Science315(5813), 838–840 (2007). [CrossRef] [PubMed]
  37. A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences8(12), 3567–3580 (2011). [CrossRef]
  38. C. B. Mouw, J. A. Yoder, and S. C. Doney, “Impact of phytoplankton community size on a linked global ocean optical and ecosystem model,” J. Mar. Syst.89(1), 61–75 (2012). [CrossRef]
  39. A. M. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil,” Limnol. Oceanogr. Methods4(1), 237–253 (2006). [CrossRef]
  40. A. Bracher, M. Vountas, T. Dinter, J. P. Burrows, R. Röttgers, and I. Peeken, “Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data,” Biogeosciences6(5), 751–764 (2009). [CrossRef]
  41. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences7(10), 3239–3257 (2010). [CrossRef]
  42. C. B. Mouw and J. A. Yoder, “Optical determination of phytoplankton size composition from global SeaWiFS imagery,” J. Geophys. Res.115(C12), C12018 (2010), doi: . [CrossRef]
  43. X. J. Pan, A. Mannino, H. G. Marshall, K. C. Filippino, and M. R. Mulholland, “Remote sensing of phytoplankton community composition along the northeast coast of the United States,” Remote Sens. Environ.115(12), 3731–3747 (2011). [CrossRef]
  44. P. A. Stæhr, S. Markager, and K. Sand-Jensen, “Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters,” Mar. Ecol. Prog. Ser.275, 115–128 (2004). [CrossRef]
  45. G. Johnsen, B. B. Prézelin, and R. V. M. Jovine, “Fluorescence excitation spectra and light utilization in two red tide dinoflagellates,” Limnol. Oceanogr.42(5, Part 2), 1166–1177 (1997). [CrossRef]
  46. T. A. Moisan and B. G. Mitchell, “Photophysiological acclimation of Phaeocystis Antarctica Karsten under light limitation,” Limnol. Oceanogr.44(2), 247–258 (1999). [CrossRef]
  47. S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr.50(1), 237–245 (2005). [CrossRef]
  48. T. Kutser, L. Metsamaa, N. Strömbeck, and E. Vahtmäe, “Monitoring cyanobacterial blooms by satellite remote sensing,” Estuar. Coast. Shelf Sci.67(1–2), 303–312 (2006). [CrossRef]
  49. H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser.258, 19–30 (2003). [CrossRef]
  50. S. Chee Yew Leong and S. Taguchi, “Optical characteristics of the harmful dinoflagellate Alexandrium tamarense in response to different nitrogen sources,” Harmful Algae4(2), 211–219 (2005). [CrossRef]
  51. Y. Yin, Y. L. Zhang, M. Z. Wang, X. H. Liu, and Z. Q. Shi, “Effects of different irradiation intensity on the growth and absorption properties of Microcystis aeruginosa and Scenedesmus obliqnus,” J. Lake Sci. (to be published).
  52. P. A. Stæhr, P. Henriksen, and S. Markager, “Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability,” Mar. Ecol. Prog. Ser.238, 47–59 (2002). [CrossRef]
  53. Z. P. Lee and K. L. Carder, “Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance,” Remote Sens. Environ.89(3), 361–368 (2004). [CrossRef]
  54. P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ.114(11), 2705–2718 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited