OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Rational design and optimization of plasmonic nanoarrays for surface enhanced infrared spectroscopy

Vladimir Liberman, Ronen Adato, Thomas H. Jeys, Brian G. Saar, Shyamsunder Erramilli, and Hatice Altug  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 11953-11967 (2012)
http://dx.doi.org/10.1364/OE.20.011953


View Full Text Article

Enhanced HTML    Acrobat PDF (1223 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an approach for rational design and optimization of plasmonic arrays for ultrasensitive surface enhanced infrared absorption (SEIRA) spectroscopy of specific protein analytes. Motivated by our previous work that demonstrated sub-attomole detection of surface-bound silk fibroin [Proc. Natl. Acad. Sci. U.S.A. 106, 19227 (2009)], we introduce here a general framework that allows for the numerical optimization of metamaterial sensor designs in order to maximize the absorbance signal. A critical feature of our method is the explicit compensation for the perturbative effects of the analyte's refractive index which alters the resonance frequency and line-shape of the metamaterial response, thereby leading to spectral distortion in SEIRA signatures. As an example, we leverage our method to optimize the geometry of periodic arrays of plasmonic nanoparticles on both Si and CaF2 substrates. The optimal geometries result in a three-order of magnitude absorbance enhancement compared to an unstructured Au layer, with the CaF2 substrate offering an additional factor of three enhancement in absorbance over a traditional Si substrate. The latter improvement arises from increase of near-field intensity over the Au nanobar surface for the lower index substrate. Finally, we perform sensitivity analysis for our optimized arrays to predict the effects of fabrication imperfections. We find that <20% deviation from the optimized absorbance response is readily achievable over large areas with modern nanofabrication techniques.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(300.6340) Spectroscopy : Spectroscopy, infrared
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 3, 2012
Revised Manuscript: April 30, 2012
Manuscript Accepted: May 3, 2012
Published: May 10, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Vladimir Liberman, Ronen Adato, Thomas H. Jeys, Brian G. Saar, Shyamsunder Erramilli, and Hatice Altug, "Rational design and optimization of plasmonic nanoarrays for surface enhanced infrared spectroscopy," Opt. Express 20, 11953-11967 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-11-11953


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009). [CrossRef] [PubMed]
  2. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011). [CrossRef] [PubMed]
  3. V. Silin and A. Plant, “Biotechnological applications of surface plasmon resonance,” Trends Biotechnol. 15(9), 353–359 (1997). [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  5. S. Wang, E. S. Forzani, and N. Tao, “Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry,” Anal. Chem. 79(12), 4427–4432 (2007). [CrossRef] [PubMed]
  6. S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11(8), 3431–3434 (2011). [CrossRef] [PubMed]
  7. M. P. Jonsson, A. B. Dahlin, L. Feuz, S. Petronis, and F. Höök, “Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing,” Anal. Chem. 82(5), 2087–2094 (2010). [CrossRef] [PubMed]
  8. A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005). [CrossRef] [PubMed]
  9. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008). [CrossRef] [PubMed]
  10. E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009). [CrossRef]
  11. R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents,” Nano Lett. 7(5), 1113–1118 (2007). [CrossRef] [PubMed]
  12. R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express 18(5), 4526–4537 (2010). [CrossRef] [PubMed]
  13. M. Osawa, “Surface-enhanced infrared absorption,” in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer Berlin / Heidelberg, 2001), pp. 163–187.
  14. V. Liberman, R. Adato, A. Mertiri, A. A. Yanik, K. Chen, T. H. Jeys, S. Erramilli, and H. Altug, “Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy,” Opt. Express 19(12), 11202–11212 (2011). [CrossRef] [PubMed]
  15. S.-Y. Lin, T.-K. Wu, H.-J. Chiou, T. H.-S. Hsu, and C.-C. Lin, “Infrared microspectroscopic imaging as a probing tool to fast distinguish chemical compositions in calcified deposits of prostatic calculi and calcific tendonitis,” Spectroscopy 25(5), 207–216 (2011). [CrossRef]
  16. J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vib. Spectrosc. 51(2), 270–275 (2009). [CrossRef]
  17. M. Boulet-Audet, T. Buffeteau, S. Boudreault, N. Daugey, and M. Pézolet, “Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra,” J. Phys. Chem. B 114(24), 8255–8261 (2010). [CrossRef] [PubMed]
  18. B. D. Lawrence, F. Omenetto, K. Chui, and D. L. Kaplan, “Processing methods to control silk fibroin film biomaterial features,” J. Mater. Sci. 43(21), 6967–6985 (2008). [CrossRef]
  19. H. Arnolds, “Vibrational dynamics of adsorbates - Quo vadis?” Prog. Surf. Sci. 86(1-2), 1–40 (2011). [CrossRef]
  20. R. F. Aroca, D. J. Ross, and C. Domingo, “Surface-enhanced infrared spectroscopy,” Appl. Spectrosc. 58(11), 324–338 (2004). [CrossRef] [PubMed]
  21. R. Forker, M. Gruenewald, and T. Fritz, “Optical differential reflectance spectroscopy on thin molecular films,” Annu. Rep. Sect. C Phys. Chem., March 9, (2012). [CrossRef]
  22. R. Qiang, R. L. Chen, and J. Chen, “Modeling Electrical Properties of Gold Films at Infrared Frequency Using FDTD Method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004). [CrossRef]
  23. Film Wizard, Scientfic Computing International.
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  25. F. Bensebaa, P. L’Ecuyer, K. Faid, C. Py, T. J. Tague, and R. S. Jackson, “Grazing angle infrared microspectroscopy of micropatterned self-assembled monolayers,” Appl. Surf. Sci. 243(1-4), 238–244 (2005). [CrossRef]
  26. FDTD Solutions, Lumerical, Inc.
  27. S. Kessentini, D. Barchiesi, T. Grosges, and M. L. de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in 2011 IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2011), 2315–2320.
  28. J. Snyman, Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms (Springer Publishing, 2005).
  29. T. T. Allen, Introduction to Engineering Statistics and Six Sigma (Springer Verlag, London, 2006).
  30. D. Staiculescu, N. Bushyager, A. Obatoyinbo, L. J. Martin, and M. M. Tentzeris, “Design and optimization of 3-D compact stripline and microstrip Bluetooth/WLAN balun architectures using the design of experiments technique,” IEEE Trans. Antenn. Propag. 53(5), 1805–1812 (2005). [CrossRef]
  31. ECHIP, Velocity Pointe, LLC.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited