OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Continuous manipulation of doughnut focal spot in a large scale

Xiang Hao, Cuifang Kuang, Yanghui Li, and Xu Liu  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 12692-12698 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1196 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically demonstrate that the doughnut focal spot can continuously be manipulated by synthetically using various beam modulation techniques. Comparatively, a more evident effect can be expected by different orders of phase modulation, while accurate manipulation stems from changing the phase diversity between two arms in an image inverting interferometer (III). The size of central dark spot can thus be continuously adjusted in a theoretically infinite scale, although it may actually be limited by resolution of Spatial Light Modulator (SLM). This approach brings additional flexibility to many applications, such as optical tweezers.

© 2012 OSA

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Physical Optics

Original Manuscript: March 23, 2012
Revised Manuscript: May 16, 2012
Manuscript Accepted: May 17, 2012
Published: May 21, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Xiang Hao, Cuifang Kuang, Yanghui Li, and Xu Liu, "Continuous manipulation of doughnut focal spot in a large scale," Opt. Express 20, 12692-12698 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. B. Airy, “On the Diffraction of an Object-glass with Circular Aperture,” Trans. Cambridge Philos. Soc.5, 283–291 (1835).
  2. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008). [CrossRef]
  3. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt.43(22), 4322–4327 (2004). [CrossRef] [PubMed]
  4. C. J. R. Sheppard, W. Gong, and K. Si, “Polarization effects in 4Pi microscopy,” Micron42(4), 353–359 (2011). [CrossRef] [PubMed]
  5. S. H. Deng, L. Liu, Y. Cheng, R. X. Li, and Z. Z. Xu, “Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy,” Opt. Express18(2), 1657–1666 (2010). [CrossRef] [PubMed]
  6. K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods3(9), 721–723 (2006). [CrossRef] [PubMed]
  7. D. W. Zhang and X. C. Yuan, “Optical doughnut for optical tweezers,” Opt. Lett.28(9), 740–742 (2003). [CrossRef] [PubMed]
  8. L. P. Du, G. H. Yuan, D. Y. Tang, and X. C. Yuan, “Tightly Focused Radially Polarized Beam for Propagating Surface Plasmon-Assisted Gap-Mode Raman Spectroscopy,” Plasmonics6(4), 651–657 (2011). [CrossRef]
  9. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009). [CrossRef]
  10. C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, “Creating attoliter detection volume by microsphere photonic nanojet and fluorescence depletion,” Opt. Commun.285(4), 402–406 (2012). [CrossRef]
  11. X. Hao, C. Kuang, Y. Li, and X. Liu, “Manipulation of doughnut focal spot by image inverting interferometry,” Opt. Lett.37(5), 821–823 (2012). [CrossRef] [PubMed]
  12. X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010). [CrossRef]
  13. B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. 2. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959). [CrossRef]
  14. D. Weigel, R. Foerster, H. Babovsky, A. Kiessling, and R. Kowarschik, “Enhanced resolution of microscopic objects by image inversion interferometry,” Opt. Express19(27), 26451–26462 (2011). [CrossRef] [PubMed]
  15. N. Sandeau and H. Giovannini, “Increasing the lateral resolution of 4Pi fluorescence microscopes,” J. Opt. Soc. Am. A23(5), 1089–1095 (2006). [CrossRef] [PubMed]
  16. K. Wicker, S. Sindbert, and R. Heintzmann, “Characterisation of a resolution enhancing image inversion interferometer,” Opt. Express17(18), 15491–15501 (2009). [CrossRef] [PubMed]
  17. N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, “Increasing the lateral resolution of scanning microscopes by a factor of two using 2-Image microscopy,” J. Eur. Opt. Soc. Rapid Pub. 4 (2009).
  18. C. J. R. Sheppard, “Validity of the Debye approximation,” Opt. Lett.25(22), 1660–1662 (2000). [CrossRef] [PubMed]
  19. S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng.46(8), 084002 (2007). [CrossRef]
  20. Y. Zheng, X. H. Wang, F. Shen, and X. Y. Li, “Generation of dark hollow beam via coherent combination based on adaptive optics,” Opt. Express18(26), 26946–26958 (2010). [CrossRef] [PubMed]
  21. C. L. Zhao, Y. J. Cai, F. Wang, X. H. Lu, and Y. Z. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett.33(12), 1389–1391 (2008). [CrossRef] [PubMed]
  22. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000). [CrossRef] [PubMed]
  23. S. Hell and E. H. K. Stelzer, “Properties of a 4pi Confocal Fluorescence Microscope,” J. Opt. Soc. Am. A9(12), 2159–2166 (1992). [CrossRef]
  24. Q. W. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express10(7), 324–331 (2002). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited