OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

3D adaptive optics in a light sheet microscope

Cyril Bourgenot, Christopher D. Saunter, Jonathan M. Taylor, John M. Girkin, and Gordon D. Love  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 13252-13261 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2113 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a single plane illumination microscope (SPIM) incorporating adaptive optics in the imaging arm. We show how aberrations can occur from the sample mounting tube and quantify the aberrations both experimentally and computationally. A wavefront sensorless approach was taken to imaging a green fluorescent protein (GFP) labelled transgenic zebrafish. We show improvements in image quality whilst recording a 3D “z–stack” and show how the aberrations come from varying depths in the fish.

© 2012 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.1085) Imaging systems : Adaptive imaging
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Adaptive Optics

Original Manuscript: March 14, 2012
Revised Manuscript: May 14, 2012
Manuscript Accepted: May 15, 2012
Published: May 29, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Cyril Bourgenot, Christopher D. Saunter, Jonathan M. Taylor, John M. Girkin, and Gordon D. Love, "3D adaptive optics in a light sheet microscope," Opt. Express 20, 13252-13261 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol.20, 106–110 (2009). [CrossRef] [PubMed]
  2. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. London, Ser. A.365, 2829–2843 (2007). [CrossRef]
  3. M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “A Measurement of specimen- induced aberrations of biological samples using phase stepping interferometry,” J. Microsc.213, 11–19 (2004). [CrossRef]
  4. M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index- mismatched media,” J. Microsc.192, 90–98 (1998). [CrossRef]
  5. D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express15, 8176–8190 (2007). [CrossRef] [PubMed]
  6. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A.99, 5788–5792 (2002). [CrossRef] [PubMed]
  7. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett.36, 1062–1064 (2011). [CrossRef] [PubMed]
  8. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc.206, 65–71 (2002). [CrossRef] [PubMed]
  9. J. W. Cha and P. T. So, “A Shack-Hartmann wavefront sensor based adaptive optics System for multiphoton microscopy,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008).
  10. N. Olivier, D. Debarre, and E. Beaurepaire, “Dynamic aberration correction for multiharmonic microscopy,” Opt. Lett.34, 3145–3147 (2009). [CrossRef] [PubMed]
  11. A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express15, 18209–18219 (2007). [CrossRef] [PubMed]
  12. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305, 1007–1009 (2004). [CrossRef] [PubMed]
  13. K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum.78, 023705 (2007). [CrossRef] [PubMed]
  14. J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development136, 1963–1975 (2009). [CrossRef] [PubMed]
  15. L. I. Zon, “Zebrafish: a new model for human disease,” Genome Res.9, 99–100 (1999) [PubMed]
  16. J. Bakkers, “Zebrafish as a model to study cardiac development and human cardiac disease,” Cardiovasc. Res.91, 183–184 (2011). [CrossRef]
  17. A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci.86, 6–19 (2005). [CrossRef] [PubMed]
  18. J. M. Taylor, C. D. Saunter, G. D. Love, J. M. Girkin, D. J. Henderson, and B. Chaudhry, “Real-time optical gating for three-dimensional beating heart imaging,” J. Biomed. Opt.16, 116021 (2011). [CrossRef] [PubMed]
  19. P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods4, 311–313 (2007). [PubMed]
  20. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods8, 811–819 (2011). [CrossRef] [PubMed]
  21. M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express14, 1339–1352 (2006). [CrossRef] [PubMed]
  22. A. Facomprez, E. Beaurepaire, and D. Debarre, “Accuracy of correction in modal sensorless adaptive optics,” Opt. Express20, 2598–2612 (2012). [CrossRef] [PubMed]
  23. K. N. Walker and R. K. Tyson, “Wavefront correction using a Fourier-based image sharpness metric,” Proc. SPIE.7468, 74680O (2009). [CrossRef]
  24. A. M. Petzold, V. M. Bedell, N. J. Boczek, J. J. Essner, D. Balciunas, K. J. Clark, and S. C. Ekker, “SCORE imaging: specimen in a corrected optical rotational enclosure,” Zebrafish7, 149–154 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1613 KB)     
» Media 2: MOV (1491 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited