OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Investigation of two-photon excited fluorescence increment via crosslinked bovine serum albumin

Chun-Yu Lin, Chi-Hsiang Lien, Keng-Chi Cho, Chia-Yuan Chang, Nan-Shan Chang, Paul J. Campagnola, Chen Yuan Dong, and Shean-Jen Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13669-13676 (2012)
http://dx.doi.org/10.1364/OE.20.013669


View Full Text Article

Enhanced HTML    Acrobat PDF (919 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The two-photon excited fluorescence (TPEF) increments of two dyes via bovine serum albumin (BSA) microstructures fabricated by the two-photon crosslinking technique were investigated. One is Rose Bengal (RB) with a high non-radiative decay rate, while the other is Eosin Y with a low non-radiative decay rate. Experimental results demonstrate that the quantum yield and lifetime of RB are both augmented via crosslinked BSA microstructures. Compared with theoretical analysis, this result indicates that the non-radiative decay rate of RB is decreased; hence, the quenched effect induced by BSA solution is suppressed. However, the fluorescence lifetime of Eosin Y is acutely abated despite the augmented quantum yield for the two-photon crosslinking processing from BSA solution. This result deduces that the radiative decay rate increased. Furthermore, the increased TPEF intensity and lifetime of RB correlated with the concentration of fabricated crosslinked BSA microstructures through pulse selection of the employed femtosecond laser is demonstrated and capable of developing a zone-plate-like BSA microstructure.

© 2012 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(190.4180) Nonlinear optics : Multiphoton processes
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Materials

History
Original Manuscript: March 27, 2012
Revised Manuscript: April 23, 2012
Manuscript Accepted: April 24, 2012
Published: June 4, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Chun-Yu Lin, Chi-Hsiang Lien, Keng-Chi Cho, Chia-Yuan Chang, Nan-Shan Chang, Paul J. Campagnola, Chen Yuan Dong, and Shean-Jen Chen, "Investigation of two-photon excited fluorescence increment via crosslinked bovine serum albumin," Opt. Express 20, 13669-13676 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-13-13669


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001). [CrossRef] [PubMed]
  2. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001). [CrossRef]
  3. T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002). [CrossRef]
  4. M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process.73(5), 561–566 (2001). [CrossRef]
  5. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  6. D. C. Neckers, “Rose Bengal,” J. Photochem. Photobiol. A47(1), 1–29 (1989). [CrossRef]
  7. K.-C. Cho, C.-H. Lien, C.-Y. Lin, C.-Y. Chang, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Enhanced two-photon excited fluorescence in three-dimensionally crosslinked bovine serum albumin microstructures,” Opt. Express19(12), 11732–11739 (2011). [CrossRef] [PubMed]
  8. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B13(3), 481–491 (1996). [CrossRef]
  9. J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett.75(23), 3605–3607 (1999). [CrossRef]
  10. M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998). [CrossRef] [PubMed]
  11. M. Kauert, P. C. Stoller, M. Frenz, and J. Ricka, “Absolute measurement of molecular two-photon absorption cross-sections using a fluorescence saturation technique,” Opt. Express14(18), 8434–8447 (2006). [CrossRef] [PubMed]
  12. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express16(6), 4029–4047 (2008). [CrossRef] [PubMed]
  13. A. Nag and D. Goswami, “Solvent effect on two-photon absorption and fluorescence of rhodamine dyes,” J. Photochem. Photobiol. Chem.206(2-3), 188–197 (2009). [CrossRef] [PubMed]
  14. C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D29(4), 1074–1079 (1996). [CrossRef]
  15. C. V. Bindhu and S. S. Harilal, “Effect of the excitation source on the quantum-yield measurements of rhodamine B laser dye studied using thermal-lens technique,” Anal. Sci.17(1), 141–144 (2001). [CrossRef] [PubMed]
  16. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition (Springer, 2010).
  17. M. A. Montenegro, M. A. Nazareno, E. N. Durantini, and C. D. Borsarelli, “Singlet molecular oxygen quenching ability of carotenoids in a reverse-micelle membrane mimetic system,” Photochem. Photobiol.75(4), 353–361 (2002). [CrossRef] [PubMed]
  18. A. Penzkofer, A. Beidoun, and M. Daiber, “Intersystem-crossing and excited-state absorption in eosin Y solutions determined by picosecond double pulse transient absorption measurements,” J. Lumin.51(6), 297–314 (1992). [CrossRef]
  19. W.-S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express18(26), 27550–27559 (2010). [CrossRef] [PubMed]
  20. M. Peter, S. M. Ameer-Beg, M. K. Y. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J.88(2), 1224–1237 (2005). [CrossRef] [PubMed]
  21. L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express20(8), 8939–8948 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited