OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique

Keisuke Nose, Yasuyuki Ozeki, Tatsuya Kishi, Kazuhiko Sumimura, Norihiko Nishizawa, Kiichi Fukui, Yasuo Kanematsu, and Kazuyoshi Itoh  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13958-13965 (2012)
http://dx.doi.org/10.1364/OE.20.013958


View Full Text Article

Enhanced HTML    Acrobat PDF (830 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose the collinear balanced detection (CBD) technique for noise suppression in fiber laser (FL)-based stimulated Raman scattering (SRS) microscopy. This technique reduces the effect of laser intensity noise at a specific frequency by means of pulse splitting and recombination with a time delay difference. We experimentally confirm that CBD can suppress the intensity noise of second harmonic (SH) of Er-FL pulses by 13dB.The measured noise level including the thermal noise is higher by only ~1.4 dB than the shot noise limit. To demonstrate SRS imaging, we use 4-ps SH pulses and 3-ps Yb-FL pulses, which are synchronized subharmonically with a jitter of 227 fs. The effectiveness of the CBD technique is confirmed through SRS imaging of a cultured HeLa cell.

© 2012 OSA

OCIS Codes
(110.4280) Imaging systems : Noise in imaging systems
(140.3510) Lasers and laser optics : Lasers, fiber
(290.5910) Scattering : Scattering, stimulated Raman
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: April 11, 2012
Revised Manuscript: May 25, 2012
Manuscript Accepted: May 26, 2012
Published: June 8, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Keisuke Nose, Yasuyuki Ozeki, Tatsuya Kishi, Kazuhiko Sumimura, Norihiko Nishizawa, Kiichi Fukui, Yasuo Kanematsu, and Kazuyoshi Itoh, "Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique," Opt. Express 20, 13958-13965 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-13-13958


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999). [CrossRef]
  2. M. Hashimoto, T. Araki, and S. Kawata, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,” Opt. Lett.25(24), 1768–1770 (2000). [CrossRef] [PubMed]
  3. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  4. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express17(5), 3651–3658 (2009). [CrossRef] [PubMed]
  5. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009). [CrossRef]
  6. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011). [CrossRef] [PubMed]
  7. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812 (2005). [CrossRef] [PubMed]
  8. C. Heinrich, A. Hofer, A. Ritsch, C. Ciardi, S. Bernet, and M. Ritsch-Marte, “Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy,” Opt. Express16(4), 2699–2708 (2008). [CrossRef] [PubMed]
  9. T. Minamikawa, M. Hashimoto, K. Fujita, S. Kawata, and T. Araki, “Multi-focus excitation coherent anti-Stokes Raman scattering (CARS) microscopy and its applications for real-time imaging,” Opt. Express17(12), 9526–9536 (2009). [CrossRef] [PubMed]
  10. A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett.87(2), 023901 (2001). [CrossRef]
  11. J.-X. Cheng, L. D. Book, and X. Sunney Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.26(17), 1341–1343 (2001). [CrossRef] [PubMed]
  12. C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett.29(24), 2923–2925 (2004). [CrossRef] [PubMed]
  13. H. Kano and H. O. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express13(4), 1322–1327 (2005). [CrossRef] [PubMed]
  14. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett.31(12), 1872–1874 (2006). [CrossRef] [PubMed]
  15. A. Owyoung, “Sensitivity limitations for CW stimulated Raman spectroscopy,” Opt. Commun.22(3), 323–328 (1977). [CrossRef]
  16. B. F. Levine, C. V. Shank, and J. P. Heritage, “Surface vibrational spectroscopy using stimulated Raman scattering,” IEEE J. Quantum Electron.15(12), 1418–1432 (1979). [CrossRef]
  17. M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic Press, 1988).
  18. P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem.58(1), 461–488 (2007). [CrossRef] [PubMed]
  19. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science330(6009), 1368–1370 (2010). [CrossRef] [PubMed]
  20. Y. Ozeki, W. Umemura, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses,” Opt. Lett.37(3), 431–433 (2012). [CrossRef] [PubMed]
  21. D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc.134(8), 3623–3626 (2012). [CrossRef] [PubMed]
  22. Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express18(13), 13708–13719 (2010). [CrossRef] [PubMed]
  23. W. Umemura, K. Fujita, Y. Ozeki, K. Goto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “Subharmonic synchronization of picosecond Yb fiber laser to picosecond Ti:sapphirelaser for stimulated Raman scattering microscopy,” Jpn. J. Appl. Phys.51, 022702 (2012). [CrossRef]
  24. E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express15(8), 4848–4856 (2007). [CrossRef] [PubMed]
  25. K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett.34(13), 2051–2053 (2009). [CrossRef] [PubMed]
  26. G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett.34(18), 2847–2849 (2009). [CrossRef] [PubMed]
  27. A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett.35(2), 226–228 (2010). [CrossRef] [PubMed]
  28. E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett.36(13), 2387–2389 (2011). [CrossRef] [PubMed]
  29. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. Sunney Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.37(10), 1652–1654 (2012). [CrossRef] [PubMed]
  30. J. W. Nicholson and M. Andrejco, “A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser,” Opt. Express14(18), 8160–8167 (2006). [CrossRef] [PubMed]
  31. D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett.30(21), 2948–2950 (2005). [CrossRef] [PubMed]
  32. E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett.34(5), 638–640 (2009). [CrossRef] [PubMed]
  33. T. Minamikawa, N. Tanimoto, M. Hashimoto, T. Araki, M. Kobayashi, K. Fujita, and S. Kawata, “Jitter reduction of two synchronized picosecond mode-locked lasers using balanced cross-correlator with two-photon detectors,” Appl. Phys. Lett.89(19), 191101 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited