OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Complete polarization and phase control for focus-shaping in high-NA microscopy

F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14015-14029 (2012)
http://dx.doi.org/10.1364/OE.20.014015


View Full Text Article

Enhanced HTML    Acrobat PDF (2398 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that, in order to attain complete polarization control across a beam, two spatially resolved variable retardations need to be introduced to the light beam. The orientation of the fast axes of the retarders must be linearly independent on the Poincaré sphere if a fixed starting polarization state is used, and one of the retardations requires a range of 2π. We also present an experimental system capable of implementing this concept using two passes on spatial light modulators (SLMs). A third SLM pass can be added to control the absolute phase of the beam. Control of the spatial polarization and phase distribution of a beam has applications in high-NA microscopy, where these properties can be used to shape the focal field in three dimensions. We present some examples of such fields, both theoretically calculated using McCutchen’s method and experimentally observed.

© 2012 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(180.6900) Microscopy : Three-dimensional microscopy
(260.5430) Physical optics : Polarization
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Microscopy

History
Original Manuscript: May 1, 2012
Revised Manuscript: May 28, 2012
Manuscript Accepted: May 29, 2012
Published: June 8, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics
August 21, 2012 Spotlight on Optics

Citation
F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, "Complete polarization and phase control for focus-shaping in high-NA microscopy," Opt. Express 20, 14015-14029 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-13-14015


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A253, 358–379 (1959). [CrossRef]
  2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91, 233901 (2003). [CrossRef] [PubMed]
  3. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12, 3377–3382 (2004). [CrossRef] [PubMed]
  4. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D: Appl. Phys.32, 1455–1461 (1999). [CrossRef]
  5. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt.43, 4322–4327 (2004). [CrossRef] [PubMed]
  6. T. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E64, 066613 (2001). [CrossRef]
  7. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7, 1543–1545 (2000). [CrossRef]
  8. D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express9, 490–497 (2001). [CrossRef] [PubMed]
  9. A. K. Spilman and T. J. Brown, “Stress birefringent, space-variant wave plates for vortex illumination,” Appl. Opt.46, 61–66 (2007). [CrossRef]
  10. T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun.203, 1–5 (2002). [CrossRef]
  11. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt.29, 2234–2239 (1990). [CrossRef] [PubMed]
  12. S. N. Khonina and I. Golub, “Optimization of focusing of linearly polarized light,” Opt. Lett.36, 352–354 (2011). [CrossRef] [PubMed]
  13. W. S. Shurcliff and S. S. Ballard, Polarized Light (D. Van Nostrand Company Inc., 1964)
  14. D. Lara and C. Dainty, “Double-pass axially resolved confocal Mueller matrix imaging polarimetry,” Opt. Lett.30, 2879–2781 (2005). [CrossRef] [PubMed]
  15. Z. Zhuang, S.-W. Suh, and J. S. Patel, “Polarization controller using nematic liquid crystals,” Opt. Lett.24, 694–696 (1999) [CrossRef]
  16. I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, “Complete polarization control of light from a liquid crystal spatial light modulator,” Opt. Express20, 364–376 (2011). [CrossRef]
  17. H. Chen, J. Hao, B.-f. Zhang, J. Xu, J. Ding, and H.-t. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett.36, 3179–3181 (2011). [CrossRef] [PubMed]
  18. D. H. Goldstein, Polarized Light, 3rd ed. (CRC Press, 2011).
  19. O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Far-field polarization-based sensitivity to sub-resolution displacements of a sub-resolution scatterer in tightly focused fields,” Opt. Express18, 5609–5628 (2010). [CrossRef] [PubMed]
  20. O. G. Rodríguez-Herrera, D. Lara, K. Bliokh, E. Ostravskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett.104, 253601 (2010). [CrossRef] [PubMed]
  21. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters and Mueller-matrix ellipsometers,” Appl. Opt.38, 3490–3502 (1999). [CrossRef]
  22. D. Lara and C. Dainty, “Axially resolved complete Mueller matrix confocal microscopy,” Appl. Opt.45, 1917–1930 (2006). [CrossRef] [PubMed]
  23. J. L. Pezzaniti and R. A. Chipman, “Linear polarization uniformity measurements taken with an imaging polarimeter,” Opt. Eng.34, 1569–1573 (1995). [CrossRef]
  24. C. W. McCutchen, “Generalized aperture and the three-dimensional diffraction image,” J. Opt. Soc. Am.54, 240–242 (1964). [CrossRef]
  25. C. W. McCutchen, “Generalized aperture and the three-dimensional diffraction image: erratum,” J. Opt. Soc. Am. A19, 1721–1721 (2002). [CrossRef]
  26. J. Lin, O. G. Rodríguez-Herrera, F. Kenny, D. Lara, and C. Dainty, “Fast vectorial calculation of the volumetric focused field distribution by using a three-dimensional Fourier transform,” Opt. Express20, 1060–1069 (2012). [CrossRef] [PubMed]
  27. I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun.271, 40–47 (2007). [CrossRef]
  28. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1, 1–57 (2009). [CrossRef]
  29. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98, 201101 (2011). [CrossRef]
  30. J. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A19, 858–870 (2004). [CrossRef]
  31. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited