OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Correcting photoacoustic signals for fluence variations using acousto-optic modulation

K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14117-14129 (2012)
http://dx.doi.org/10.1364/OE.20.014117


View Full Text Article

Enhanced HTML    Acrobat PDF (1463 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical concept which may lead to quantitative photoacoustic mapping of chromophore concentrations. The approach supposes a technique capable of tagging light in a well-defined tagging volume at a specific location deep in the medium. We derive a formula that expresses the local absorption coefficient inside a medium in terms of noninvasively measured quantities and experimental parameters and we validate the theory using Monte Carlo simulations. Furthermore, we performed an experiment to basically validate the concept as a strategy to correct for fluence variations in photoacoustics. In the experiment we exploit the possibility of acousto-optic modulation, using focused ultrasound, to tag photons. Results show that the variation in photoacoustic signals of absorbing insertions embedded at different depths in a phantom, caused by fluence variations of more than one order of magnitude, can be corrected for to an accuracy of 5%.

© 2012 OSA

OCIS Codes
(170.1065) Medical optics and biotechnology : Acousto-optics
(110.5125) Imaging systems : Photoacoustics
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 12, 2012
Revised Manuscript: June 1, 2012
Manuscript Accepted: June 3, 2012
Published: June 11, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen, "Correcting photoacoustic signals for fluence variations using acousto-optic modulation," Opt. Express 20, 14117-14129 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-13-14117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).
  2. J. R. Rajian, P. L. Carson, and X. D. Wang, “Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent,” Opt. Express17(6), 4879–4889 (2009). [CrossRef] [PubMed]
  3. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative optoacoustic signal extraction using sparse signal representation,” IEEE Trans. Med. Imaging28(12), 1997–2006 (2009). [CrossRef] [PubMed]
  4. R. J. Zemp, “Quantitative photoacoustic tomography with multiple optical sources,” Appl. Opt.49(18), 3566–3572 (2010). [CrossRef] [PubMed]
  5. B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A26(2), 443–455 (2009). [CrossRef] [PubMed]
  6. B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt.45(8), 1866–1875 (2006). [CrossRef] [PubMed]
  7. J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt.49(8), 1219–1233 (2010). [CrossRef] [PubMed]
  8. L. Yao, Y. Sun, and H. B. Jiang, “Transport-based quantitative photoacoustic tomography: simulations and experiments,” Phys. Med. Biol.55(7), 1917–1934 (2010). [CrossRef] [PubMed]
  9. L. Yin, Q. Wang, Q. Z. Zhang, and H. B. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett.32(17), 2556–2558 (2007). [CrossRef] [PubMed]
  10. Z. Yuan, Q. Wang, and H. B. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton Method,” Opt. Express15(26), 18076–18081 (2007). [CrossRef] [PubMed]
  11. A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt.16(9), 096016 (2011). [CrossRef] [PubMed]
  12. X. Q. Li, L. Xi, R. X. Jiang, L. Yao, and H. B. Jiang, “Integrated diffuse optical tomography and photoacoustic tomography: phantom validations,” Biomed. Opt. Express2(8), 2348–2353 (2011). [CrossRef] [PubMed]
  13. L. H. Wang, S. L. Jacques, and X. M. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett.20(6), 629–631 (1995). [CrossRef] [PubMed]
  14. L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett.87(4), 043903 (2001). [CrossRef] [PubMed]
  15. X. A. Xu, H. L. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011). [CrossRef] [PubMed]
  16. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml - monte-carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Biol.47(2), 131–146 (1995). [CrossRef]
  17. M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett.28(24), 2482–2484 (2003). [CrossRef] [PubMed]
  18. A. Bratchenia, R. Molenaar, T. G. van Leeuwen, and R. P. H. Kooyman, “Acousto-optic-assisted diffuse optical tomography,” Opt. Lett.36(9), 1539–1541 (2011). [CrossRef] [PubMed]
  19. A. R. Selfridge, “Approximate material properties in isotropic materials,” IEEE Trans. Sonics Ultrason.32(3), 381–394 (1985). [CrossRef]
  20. M. Lesaffre, F. Jean, A. Bordes, F. Ramaz, E. Bossy, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Sub-millisecond in situ measurement of the photorefractive response in a self adaptive wavefront holography setup developped for acousto-optic imaging,” Proc. SPIE6086, 8612 (2006).
  21. Y. Z. Li, P. Hemmer, C. H. Kim, H. L. Zhang, and L. V. Wang, “Detection of ultrasound-modulated diffuse photons using spectral-hole burning,” Opt. Express16(19), 14862–14874 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited