OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Fabrication of corrugated Ge-doped silica fibers

P. Wróbel, T. Stefaniuk, T. J. Antosiewicz, A. Libura, G. Nowak, T. Wejrzanowski, M. Andrzejczuk, K. J. Kurzydłowski, K. Jedrzejewski, and T. Szoplik  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14508-14513 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2095 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method of fabricating Ge-doped SiO2 fibers with corrugations around their full circumference for a desired length in the longitudinal direction. The procedure comprises three steps: hydrogenation of Ge-doped SiO2 fibers to increase photosensitivity, recording of Bragg gratings with ultraviolet light to achieve modulation of refractive index, and chemical etching. Finite-length, radially corrugated fibers may be used as couplers. Corrugated tapered fibers are used as high energy throughput probes in scanning near-field optical microscopy.

© 2012 OSA

OCIS Codes
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(180.5810) Microscopy : Scanning microscopy
(230.0230) Optical devices : Optical devices
(060.3738) Fiber optics and optical communications : Fiber Bragg gratings, photosensitivity
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 5, 2012
Revised Manuscript: May 31, 2012
Manuscript Accepted: May 31, 2012
Published: June 14, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

P. Wróbel, T. Stefaniuk, T. J. Antosiewicz, A. Libura, G. Nowak, T. Wejrzanowski, M. Andrzejczuk, K. J. Kurzydłowski, K. Jedrzejewski, and T. Szoplik, "Fabrication of corrugated Ge-doped silica fibers," Opt. Express 20, 14508-14513 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 043001 (2010), http://dx.doi.org/10.1088/2040-8978/12/4/043001 . [CrossRef]
  2. X. Zeng and D. Fan, “Electromagnetic fields and transmission properties in tapered hollow metallic waveguides,” Opt. Express17(1), 34–45 (2009). [CrossRef] [PubMed]
  3. Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic Nearfield Scanning Probe with High Transmission,” Nano Lett.8(9), 3041–3045 (2008). [CrossRef] [PubMed]
  4. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-Field Localization in Plasmonic Superfocusing: A Nanoemitter on a Tip,” Nano Lett.10(2), 592–596 (2010). [CrossRef] [PubMed]
  5. S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B81(7), 075317 (2010). [CrossRef]
  6. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem.125(2), 688–703 (2007). [CrossRef]
  7. R. Gumenyuk, C. Thür, S. Kivistö, and O. G. Okhotnikov, “Tapered fiber Bragg gratings for dispersion compensation in mode-locked Yb-doped fiber laser,” IEEE J. Quantum Electron.46(5), 769–773 (2010). [CrossRef]
  8. T. Allsop, F. Floreani, K. P. Jedrzejewski, P. V. S. Marques, R. Romero, D. J. Webb, and I. Bennion, “Spectral Characteristics of Tapered LPG Device as a Sensing Element for Refractive Index and Temperature,” J. Lightwave Technol.24(2), 870–878 (2006). [CrossRef]
  9. G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett.31(14), 2118–2120 (2006). [CrossRef] [PubMed]
  10. K. C. Patra, R. Singh, E. K. Sharma, and K. Yasumoto, “Analysis of transmission characteristics of long period gratings in tapered optical fibers,” Appl. Opt.48(31), G95–G100 (2009). [CrossRef] [PubMed]
  11. R. W. Ziolkowski and J. B. Judkins, “Nonlinear finite-difference time-domain modeling of linear and nonlinear corrugated waveguides,” J. Opt. Soc. Am. B11(9), 1565–1575 (1994). [CrossRef]
  12. J. M. Lázaro, A. Quintela, W. Urbanczyk, J. Wojcik, and J. M. Lopez-Higuera, “Bragg Gratings Written in Tapered Solid-Core Photonic Crystal Fibers,” IEEE Photon. Technol. Lett.22(14), 1048–1050 (2010). [CrossRef]
  13. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett.32(10), 647 (1978). [CrossRef]
  14. R. Stöckle, Ch. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett.75(2), 160–162 (1999). [CrossRef]
  15. S. K. Mondal, A. Mitra, N. Singh, S. N. Sarkar, and P. Kapur, “Optical fiber nanoprobe preparation for near-field optical microscopy by chemical etching under surface tension and capillary action,” Opt. Express17(22), 19470–19475 (2009). [CrossRef] [PubMed]
  16. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loadings as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191 (1993). [CrossRef]
  17. J. Albert, K. O. Hill, B. Malo, D. C. Johnson, F. Bilodeau, I. M. Templeton, and J. L. Brebner, “Maskless writing of submicrometer gratings in fused silica by focused ion beam implantation and differential wet etching,” Appl. Phys. Lett.63(17), 2309–2311 (1993). [CrossRef]
  18. V. Grubsky, D. S. Starodubov, and J. Feinberg, “Photochemical reaction of hydrogen with germanosilicate glass initiated by 3.4÷5.4eV ultraviolet light,” Opt. Lett.24(11), 729–731 (1999). [CrossRef] [PubMed]
  19. M. Fokine, “Manipulating glass for photonics,” Phys. Status Solidi A206(5), 880–884 (2009). [CrossRef]
  20. F. Dürr, G. Kulik, H. Limberger, R. Salathé, S. Semjonov, and E. Dianov, “Hydrogen loading and UV-irradiation induced etch rate changes in phosphorus-doped fibers,” Opt. Express12(23), 5770–5776 (2004). [CrossRef] [PubMed]
  21. P. Pace, S. Huntington, K. Lyytikäinen, A. Roberts, and J. Love, “Refractive index profiles of Ge-doped optical fibers with nanometer spatial resolution using atomic force microscopy,” Opt. Express12(7), 1452–1457 (2004). [CrossRef] [PubMed]
  22. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  23. A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon ponit-like emitter: resolution versus the aperture tip,” Opt. Commun.284(5), 1444–1450 (2011). [CrossRef]
  24. T. J. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express15(17), 10920–10928 (2007). [CrossRef] [PubMed]
  25. T. J. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev.16(4), 451–457 (2008). [CrossRef]
  26. V. Lotito, U. Sennhauser, and Ch. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express18(8), 8722–8734 (2010). [CrossRef] [PubMed]
  27. F. I. Baida and A. Belkhir, “Superfocusing and Light Confinement by Surface Plasmon Excitation Through Radially Polarized Beam,” Plasmonics4(1), 51–59 (2009). [CrossRef]
  28. V. Lotito, U. Sennhauser, Ch. Hafner, and G.-L. Bona, “Fully Metal-Coated Scanning Near-Field Optical Microscopy Probes with Spiral Corrugations for Superfocusing under Arbitrarily Oriented Linearly Polarised Excitation,” Plasmonics6(2), 327–336 (2011). [CrossRef] [PubMed]
  29. D. R. Turner, “Etch procedure for optical fibers,” US patent 4,469,554, AT&T Bell Laboratories, Murray Hill, NJ, USA, 1983.
  30. H. Muramatsu, K. Homma, N. Chiba, N. Yamamoto, and A. Egawa, “Dynamic etching method for fabricating a variety of tip shapes in the optical fibre probe of a scanning near-field optical microscope,” J. Microsc.194(2-3), 383–387 (1999). [CrossRef] [PubMed]
  31. T. Osuch and Z. Jaroszewicz, “Numerical analysis of apodized fiber Bragg gratings formation using phase mask with variable diffraction efficiency,” Opt. Commun.284(2), 567–572 (2011). [CrossRef]
  32. T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Magnetic field concentrator for probing optical magnetic metamaterials,” Opt. Express18(25), 25906–25911 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited