OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry

Jan Scrimgeour and Jennifer E. Curtis  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14534-14541 (2012)
http://dx.doi.org/10.1364/OE.20.014534


View Full Text Article

Enhanced HTML    Acrobat PDF (1168 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope’s pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope’s optical path.

© 2012 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(090.1970) Holography : Diffractive optics
(170.0110) Medical optics and biotechnology : Imaging systems
(180.2520) Microscopy : Fluorescence microscopy
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Microscopy

History
Original Manuscript: March 30, 2012
Revised Manuscript: May 21, 2012
Manuscript Accepted: May 26, 2012
Published: June 14, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Jan Scrimgeour and Jennifer E. Curtis, "Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry," Opt. Express 20, 14534-14541 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-13-14534


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci.365(1861), 2829–2843 (2007). [CrossRef] [PubMed]
  2. J. Sebag, J. Arnaud, G. Lelièvre, J. L. Nieto, and E. L. Coarer, “High-resolution imaging using pupil segmentation,” J. Opt. Soc. Am. A7(7), 1237–1242 (1990). [CrossRef]
  3. G. Lelievre, J.-L. Nieto, E. Thouvenot, D. Salmon, and A. Llebaria, “Very high resolution imaging using sub-pupil apertures, recentering and selection of short exposures,” Astron. Astrophys.200, 301–311 (1988).
  4. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A11(7), 1949–1957 (1994). [CrossRef] [PubMed]
  5. P. Prieto, E. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express12(17), 4059–4071 (2004). [CrossRef] [PubMed]
  6. E. Fernandez and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express11(9), 1056–1069 (2003). [CrossRef] [PubMed]
  7. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, New York, 1988).
  8. J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol.20(1), 106–110 (2009). [CrossRef] [PubMed]
  9. W. Supatto, T. V. Truong, D. Débarre, and E. Beaurepaire, “Advances in multiphoton microscopy for imaging embryos,” Curr. Opin. Genet. Dev.21(5), 538–548 (2011). [CrossRef] [PubMed]
  10. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010). [CrossRef] [PubMed]
  11. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007). [CrossRef] [PubMed]
  12. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]
  13. T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010). [CrossRef]
  14. R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt.12(12), 124004 (2010). [CrossRef]
  15. G. Hall, G. C. Spalding, P. J. Campagnola, J. G. White, and K. W. Eliceiri, “Fast localized wavefront correction using area-mapped phase-shift interferometry,” Opt. Lett.36(15), 2892–2894 (2011). [CrossRef] [PubMed]
  16. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express13(5), 1468–1476 (2005). [CrossRef] [PubMed]
  17. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science322(5904), 1065–1069 (2008). [CrossRef] [PubMed]
  18. E. Fuchs, J. Jaffe, R. Long, and F. Azam, “Thin laser light sheet microscope for microbial oceanography,” Opt. Express10(2), 145–154 (2002). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited