OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold

H. Bae and M. Yu  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14573-14583 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1614 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a miniature Fabry-Perot pressure sensor fabricated at the tip of an optical fiber with a pre-written Bragg grating by using UV-molding polymer process. The mold is constructed by integrating an optical fiber of 80 μm diameter with a zirconia ferrule. The optical fiber based mold makes it possible to use optical aligning method to monitor the coupled intensity between the mold-side and replica-side fibers, rendering a maskless alignment process with a submicrometer accuracy. A polymer-metal composite thin diaphragm is employed as the pressure transducer. The overall sensor size is around 200 μm in diameter. Experimental study shows that the sensor exhibits a good linearity over a pressure range of 1.9-7.9 psi, with a sensitivity of 0.0106 μm/psi. The fiber Bragg grating is exploited for simultaneous temperature measurements or compensation for temperature effects in pressure readings. The sensor is expected to benefit many fronts that require miniature and inexpensive sensors for reliable pressure measurement, especially biomedical applications.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(230.3990) Optical devices : Micro-optical devices

ToC Category:

Original Manuscript: May 10, 2012
Revised Manuscript: June 1, 2012
Manuscript Accepted: June 3, 2012
Published: June 15, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

H. Bae and M. Yu, "Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold," Opt. Express 20, 14573-14583 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol.12(3), 227–237 (2006). [CrossRef]
  2. R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng.38(10), 974–981 (1991). [CrossRef] [PubMed]
  3. D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, “Novel MEMS pressure and temperature sensors fabricated on optical fibers,” J. Micromech. Microeng.12(3), 229–235 (2002). [CrossRef]
  4. M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J.3(1), 102–107 (2003). [CrossRef]
  5. D. Donlagic and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett.30(16), 2071–2073 (2005). [CrossRef] [PubMed]
  6. J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett.30(24), 3269–3271 (2005). [CrossRef] [PubMed]
  7. W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber,” Opt. Express17(19), 16613–16618 (2009). [CrossRef] [PubMed]
  8. K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng.15(1), 71–75 (2005). [CrossRef]
  9. G. Hill, R. Melamud, A. Davenport, F. Declercq, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys.138(1), 52–62 (2007). [CrossRef]
  10. H. Bae, X. M. Zhang, H. Liu, and M. Yu, “Miniature surface-mountable Fabry-Perot pressure sensor constructed with a 45 ° angled fiber,” Opt. Lett.35(10), 1701–1703 (2010). [CrossRef] [PubMed]
  11. E. S. Olson, “Observing middle and inner ear mechanics with novel intracochlear pressure sensors,” J. Acoust. Soc. Am.103(6), 3445–3463 (1998). [CrossRef] [PubMed]
  12. E. Cibula and D. Donlagić, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt.44(14), 2736–2744 (2005). [CrossRef] [PubMed]
  13. S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt.45(22), 5590–5596 (2006). [CrossRef] [PubMed]
  14. S. Nesson, M. Yu, X. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt.13(4), 044040 (2008). [CrossRef] [PubMed]
  15. W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbomachinery applications,” Rev. Sci. Instrum.70(3), 1868–1874 (1999). [CrossRef]
  16. F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry–Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett.37(2), 133–135 (2012). [CrossRef]
  17. Q. Wang, L. Zhang, C. Sun, and Q. Yu, “Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement,” IEEE Sens. J.8(11), 1879–1883 (2008). [CrossRef]
  18. K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser.178, 012016 (2009). [CrossRef]
  19. J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry–Pérot fiber-optic pressure sensor,” IEEE Photon. Technol. Lett.18(10), 1134–1136 (2006). [CrossRef]
  20. S. Aref, H. Latifi, M. Zibaii, and M. Afshari, “Fiber optic Fabry–Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun.269(2), 322–330 (2007). [CrossRef]
  21. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett.82(8), 1152–1154 (2003). [CrossRef]
  22. S. M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys.36(20), 2451–2456 (2003). [CrossRef]
  23. M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, and K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett.1(11), 384–385 (1989). [CrossRef]
  24. S. Ahn, M. Choi, H. Bae, J. Lim, H. Myung, H. Kim, and S. Kang, “Design and fabrication of micro optical film by ultraviolet roll imprinting,” Jpn. J. Appl. Phys.46(8B), 5478–5484 (2007). [CrossRef]
  25. J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of hybrid microoptics using UV imprinting process with shrinkage compensation method,” Jpn. J. Appl. Phys.47(8), 6719–6722 (2008). [CrossRef]
  26. B. Kim, M. Choi, H. Kim, J. Lim, and S. Kang, “Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination,” Opt. Express17(20), 17916–17927 (2009). [CrossRef] [PubMed]
  27. P. Dannberg, L. Erdmann, A. Krehl, C. Wachter, and A. Brauer, “Integration of optical interconnects and optoelectronic elements on wafer-scale,” Mater. Sci. Semicond. Process.3(5-6), 437–441 (2000). [CrossRef]
  28. J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed UV-nanoimprint lithography tool,” Microelectron. Eng.85(5-6), 861–865 (2008). [CrossRef]
  29. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt.43(22), 4303–4310 (2004). [CrossRef] [PubMed]
  30. B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003). [CrossRef]
  31. T. Liu, G. F. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fiber Bragg grating sensor and an extrinsic Fabry-Perot sensor,” Proc. SPIE3042, 203–212 (1997). [CrossRef]
  32. J. Ma, W. Tang, and W. Zhou, “Optical-fiber sensor for simultaneous measurement of pressure and temperature: analysis of cross sensitivity,” Appl. Opt.35(25), 5206–5209 (1996). [CrossRef] [PubMed]
  33. X. Hu, D. Liang, J. Zeng, and G. Lu, “A long period grating for simultaneous measurement of temperature and strain based on support vector regression,” J. Intell. Mater. Syst. Struct.21(10), 955–959 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited