OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

Calculation of optical forces on an ellipsoid using vectorial ray tracing method

Jin-Hua Zhou, Min-Cheng Zhong, Zi-Qiang Wang, and Yin-Mei Li  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 14928-14937 (2012)
http://dx.doi.org/10.1364/OE.20.014928


View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For a triaxial ellipsoid in an optical trap with spherical aberration, the optical forces, torque and stress are analyzed using vectorial ray tracing. The torque will automatically regulate ellipsoid’s long axis parallel to optic axis. For a trapped ellipsoid with principal axes in the ratio 1:2:3, the high stress distribution appears in x-z plane. And the optical force at x-axis is weaker than at y-axis due to the shape size. While the ellipsoid departs laterally from trap center, the measurable maximum transverse forces will be weakened due to axial equilibrium and affected by inclined orientation. For an appropriate ring beam, the maximum optical forces are strong in three dimensions, thus, this optical trap is appropriate to trap cells for avoiding damage from laser.

© 2012 OSA

OCIS Codes
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(080.5692) Geometric optics : Ray trajectories in inhomogeneous media

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: April 18, 2012
Revised Manuscript: May 23, 2012
Manuscript Accepted: June 5, 2012
Published: June 19, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Jin-Hua Zhou, Min-Cheng Zhong, Zi-Qiang Wang, and Yin-Mei Li, "Calculation of optical forces on an ellipsoid using vectorial ray tracing method," Opt. Express 20, 14928-14937 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-14-14928


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. G. Wu, Y. M. Li, D. Lu, Z. Liu, Z. D. Cheng, and L. Q. He, “Mesurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett.30, 89–95 (2009).
  2. S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt.50, 1581–1590 (2003).
  3. G. Volpe, G. P. Singh, and D. Petrov, “Dynamics of a growing cell in an optical trap,” Appl. Phys. Lett.88(23), 231106 (2006). [CrossRef]
  4. D. P. Cherney, T. E. Bridges, and J. M. Harris, “Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy,” Anal. Chem.76(17), 4920–4928 (2004). [CrossRef] [PubMed]
  5. J. C. Loudet, A. G. Yodh, and B. Pouligny, “Wetting and contact lines of micrometer-sized ellipsoids,” Phys. Rev. Lett.97(1), 018304 (2006). [CrossRef] [PubMed]
  6. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124(5-6), 529–541 (1996). [CrossRef]
  7. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997). [CrossRef]
  8. K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt.35(15), 2702–2710 (1996). [CrossRef] [PubMed]
  9. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modeling of optical trapping,” Comput. Phys. Commun.142(1-3), 468–471 (2001). [CrossRef]
  10. F. Xu, K. F. Ren, G. Gouesbet, X. S. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(2), 026613 (2007). [CrossRef] [PubMed]
  11. S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A24(2), 430–443 (2007). [CrossRef] [PubMed]
  12. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9(8), S196–S203 (2007). [CrossRef]
  13. S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A84(5), 053808 (2011). [CrossRef]
  14. Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express19(17), 16044–16057 (2011). [CrossRef] [PubMed]
  15. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: Focal point positioning effects at resonance,” J. Appl. Phys.65(8), 2900–2906 (1989). [CrossRef]
  16. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the Ray Optics Regime,” Biophys. J.61(2), 569–582 (1992). [CrossRef] [PubMed]
  17. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B14(12), 3323–3333 (1997). [CrossRef]
  18. K. Shima, R. Omori, and A. Suzuki, “Forces of a single-beam gradient-force optical trap on dielectric spheroidal particles in the geometric-optics regime,” Jpn. J. Appl. Phys.37(Part 1, No. 11), 6012–6015 (1998). [CrossRef]
  19. J. S. Kim and S. W. Kim, “Dynamic motion analysis of optically trapped nonspherical particles with off-axis position and arbitrary orientation,” Appl. Opt.39(24), 4327–4332 (2000). [CrossRef] [PubMed]
  20. D. H. Li, J. X. Pu, and X. Q. Wang, “Radiation forces of a dielectric medium plate induced by a Gaussian beam,” Opt. Commun.285(7), 1680–1683 (2012). [CrossRef]
  21. J. H. Zhou, H. L. Ren, J. Cai, and Y. M. Li, “Ray-tracing methodology: application of spatial analytic geometry in the ray-optic model of optical tweezers,” Appl. Opt.47(33), 6307–6314 (2008). [CrossRef] [PubMed]
  22. P. B Bareil, Y. L. Sheng, A. Chiou, P. B Bareil, Y. L. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express14(25), 12503–12509 (2006). [CrossRef] [PubMed]
  23. M. Born and E. Wolf, “Reflectivity and transmissivity,” in Principles of Optics (Cambridge University Press, 1999).
  24. E. Aspnes, T. D. Milster, and K. Visscher, “Optical force model based on sequential ray tracing,” Appl. Opt.48(9), 1642–1650 (2009). [CrossRef] [PubMed]
  25. X. Sheng-Hua, L. Yin-Mei, and L. Li-Ren, “Systematical study of the trapping forces of optical tweezers formed by different types of optical ring beams,” Chin. Phys.15(6), 1391–1397 (2006). [CrossRef]
  26. P. Liu and B. Lu, “Phase singularities of the transverse field component of high numerical aperture dark-hollow Gaussian beams in the focal region,” Opt. Commun.272(1), 1–8 (2007). [CrossRef]
  27. S. H. Xu, Y. M. Li, and L. R. Lou, “Axial optical trapping forces on two particles trapped simultaneously by optical tweezers,” Appl. Opt.44(13), 2667–2672 (2005). [CrossRef] [PubMed]
  28. P. B. Bareil, Y. Sheng, Y. Q. Chen, and A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Opt. Express15(24), 16029–16034 (2007). [CrossRef] [PubMed]
  29. M. Gu, P. C. Ke, and X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum.68(10), 3666–3668 (1997). [CrossRef]
  30. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive-indexes - an integral-representation,” J. Opt. Soc. Am. A12(2), 325–332 (1995). [CrossRef]
  31. F. Merenda, G. Boer, J. Rohner, G. Delacrétaz, and R. P. Salathé, “Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow,” Opt. Express14(4), 1685–1699 (2006). [CrossRef] [PubMed]
  32. Z. Gong, Z. Wang, Y. M. Li, L. R. Lou, and S. H. Xu, “Axial deviation of an optically trapped particle in trapping force calibration using the drag force method,” Opt. Commun.273(1), 37–42 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited