OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

Photonic simulation method applied to the study of structural color in Myxomycetes

Andrés Dolinko, Diana Skigin, Marina Inchaussandague, and Cecilia Carmaran  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15139-15148 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2314 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel simulation method to investigate the multicolored effect of the Diachea leucopoda (Physarales order, Myxomycetes class), which is a microorganism that has a characteristic pointillistic iridescent appearance. It was shown that this appearance is of structural origin, and is produced within the peridium -protective layer that encloses the mass of spores-, which is basically a corrugated sheet of a transparent material. The main characteristics of the observed color were explained in terms of interference effects using a simple model of homogeneous planar slab. In this paper we apply a novel simulation method to investigate the electromagnetic response of such structure in more detail, i.e., taking into account the inhomogeneities of the biological material within the peridium and its curvature. We show that both features, which could not be considered within the simplified model, affect the observed color. The proposed method is of great potential for the study of biological structures, which present a high degree of complexity in the geometrical shapes as well as in the materials involved.

© 2012 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(240.0310) Optics at surfaces : Thin films
(260.3160) Physical optics : Interference
(330.1690) Vision, color, and visual optics : Color
(160.2710) Materials : Inhomogeneous optical media

ToC Category:
Thin Films

Original Manuscript: April 16, 2012
Revised Manuscript: May 22, 2012
Manuscript Accepted: June 10, 2012
Published: June 21, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Andrés Dolinko, Diana Skigin, Marina Inchaussandague, and Cecilia Carmaran, "Photonic simulation method applied to the study of structural color in Myxomycetes," Opt. Express 20, 15139-15148 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt.2, R15–R28 (2000). [CrossRef]
  2. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424, 852–855 (2003). [CrossRef] [PubMed]
  3. S. Berthier, Iridescences, the physical colours of insects (Springer Science+Business Media, LLC, 2007).
  4. S. Kinoshita, Structural colors in the realm of nature (World Scientific Publishing Co., 2008). [CrossRef]
  5. S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc., Interface6, S115–S132 (2009).
  6. S. Yoshioka and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A23, 134–141 (2006). [CrossRef]
  7. W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinsp. Biomim.1, 89–95 (2006). [CrossRef]
  8. R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Biomimetization of butterfly wings by the conformal-evaporated-film-by rotation technique for photonics,” Appl. Phys. Lett.93, 083901 (2008). [CrossRef]
  9. R. J. Martín-Palma and A. Lakhtakia, “Biomimetics and bioinspiration,” Proc. SPIE7401, 1–196 (2009).
  10. S. Stephenson and H. Stempen, Myxomycetes. A handbook of slime molds (Timber Press, 2000).
  11. H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains national park: ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia96, 537–547 (2004). [CrossRef] [PubMed]
  12. J. D. Schoknecht and H. W. Keller, “Peridial composition of white fructifications in the trichiales (Perichaena and Dianema),” Can. J. Bot.55, 1807–1819 (1977). [CrossRef]
  13. H. C. Aldrich, “Influence of inorganic ions on color of lime in the myxomycetes,” Mycologia74, 404–411 (1982). [CrossRef]
  14. T. W. Gaither and H. W. Keller, “Taxonomic comparison of Diachea subsessilis and D. Deviata (Myxomycetes, Didymiaceae) using scanning electron microscopy,” Syst. Geogr. Pl.74, 217–230 (2004).
  15. M. Inchaussandague, D. Skigin, C. Carmaran, and S. Rosenfeldt, “Structural color in Myxomycetes,” Opt. Express18, 16055–16063 (2010). [CrossRef] [PubMed]
  16. C. Carmaran, Departamento de Biodiversidad y Biología Experimental, FCEN, University of Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires, Argentina, S. Rosenfeldt, D. Skigin, M. Inchaussandague, and H. Keller, are preparing a manuscript to be called “Iridescence and ultrastructure in the myxomycete Diachea leucopodia (Physarales).”
  17. P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc., Interface6, S133–S148 (2009).
  18. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71, 076401 (2008). [CrossRef]
  19. S. Yoshioka, E. Nakamura, and S. Kinoshita, “Origin of two-color iridescence in rock dove’s feather,” J. Phys. Soc. Jpn.76, 013801 (2007). [CrossRef]
  20. J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express15, 4351–4357 (2007). [CrossRef] [PubMed]
  21. S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E83, 051917 (2011). [CrossRef]
  22. A. Luna, D. Skigin, M. Inchaussandague, and A. Roig Alsina, “Structural color in beetles of South America,” Proc. SPIE7782, 778205 (2010). [CrossRef]
  23. B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express9, 567–578 (2001). [CrossRef] [PubMed]
  24. R. O. Prum and R. Torres, “Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays,” J. Exp. Biol.206, 2409–2429 (2003). [CrossRef] [PubMed]
  25. R. O. Prum, T. Quinn, and R. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol.209, 748–765 (2006). [CrossRef] [PubMed]
  26. A. E. Dolinko, “From Newton’s second law to Huygens’s principle: visualizing waves in a large array of masses joined by springs,” Eur. J. Phys.30, 1217–1228 (2009). [CrossRef]
  27. U. Eliasson, “Ultrastructure of Lycogala and Reticularia,” Trans. Br. Mycol. Soc.77, 243–249 (1981). [CrossRef]
  28. E. F. Haskins and M. D. McGuiness, “Sporophore ultrastructure of Echinostelium arboreum,” Mycologia81, 303–307 (1989). [CrossRef]
  29. R. McHugh and C. Reid, “Sporangial ultrastructure of Hemitrichia minor (Myxomycetes: Trichiales),” Mycol. Res.94, 1144–1146 (1990). [CrossRef]
  30. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys.203, 255–307 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (526 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited