OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

Optimal laser scan path for localizing a fluorescent particle in two or three dimensions

Gregg M. Gallatin and Andrew J. Berglund  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16381-16393 (2012)
http://dx.doi.org/10.1364/OE.20.016381


View Full Text Article

Enhanced HTML    Acrobat PDF (850 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Localizing a fluorescent particle by scanning a focused laser beam in its vicinity and analyzing the detected photon stream provides real-time information for a modern class of feedback control systems for particle tracking and trapping. We show for the full range of standard merit functions based on the Fisher information matrix (1) that the optimal path coincides with the positions of maximum slope of the square root of the beam intensity rather than with the intensity itself, (2) that this condition matches that derived from the theory describing the optimal design of experiments and (3) that in one dimension it is equivalent to maximizing the signal to noise ratio. The optimal path for a Gaussian beam scanned in two or three dimensions is presented along with the Cramér-Rao bound, which gives the ultimate localization accuracy that can be achieved by analyzing the detected photon stream. In two dimensions the optimum path is independent of the chosen merit function but this is not the case in three dimensions. Also, we show that whereas the optimum path for a Gaussian beam in two dimensions can be chosen to be continuous, it cannot be continuous in three dimensions.

© 2012 OSA

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(110.3055) Imaging systems : Information theoretical analysis

ToC Category:
Microscopy

History
Original Manuscript: May 17, 2012
Revised Manuscript: June 7, 2012
Manuscript Accepted: June 8, 2012
Published: July 3, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Gregg M. Gallatin and Andrew J. Berglund, "Optimal laser scan path for localizing a fluorescent particle in two or three dimensions," Opt. Express 20, 16381-16393 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-15-16381


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Thompson, D. Larson, and W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82, 2775–2783 (2002). [CrossRef] [PubMed]
  2. R. Ober, S. Ram, and E. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J.86, 1185–1200 (2004). [CrossRef] [PubMed]
  3. M. Cheezum, W. Walker, and W. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J.81, 2378–2388 (2001). [CrossRef] [PubMed]
  4. J. Crocker and D. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interf. Sci.179, 298–310 (1996). [CrossRef]
  5. T. Savin and P. S. Doyle, “Static and dynamic errors in particle tracking microrheology,” Biophys. J.88, 623–638 (2005). [CrossRef]
  6. M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of single glycine receptors revealed by single-quantum dot tracking,” Science302, 442–445 (2003). [CrossRef] [PubMed]
  7. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goodman, and P. R. Selvin, “Myosin V walks hand-overhand: Single fluorophore imaging with 1.5-nm localization,” Science300, 2061–2065 (2003). [CrossRef] [PubMed]
  8. B. Huang, M. Bates, and X. Zhuang, “Super resolution fluorescence microscopy,” Annu. Rev. Biochem.78, 993–1016 (2009). [CrossRef] [PubMed]
  9. W. E. Moerner, “New directions in single-molecule imaging and analysis,” Proc. Natl. Acad. Sci. USA104, 12596–12602 (2007). [CrossRef] [PubMed]
  10. H. Cang, C. Shan Xu, and H. Yang, “Progress in single-molecule tracking spectroscopy,” Chem. Phys. Lett.457, 285–291 (2008). [CrossRef]
  11. A. P. Fields and A. E. Cohen, “Anti-Brownian traps for studies on single molecules,” Method. Enzymol.475, 149–174 (2010). [CrossRef]
  12. M. Armani, S. Chaudhary, R. Probst, and B. Shapiro, “Using feedback control and micro-fluidics to steer individual particles,” 18th IEEE International Conference on MEMS855–858 (2005).
  13. A. J. Berglund and H. Mabuchi, “Tracking-FCS: Fluorescence correlation spectroscopy of individual particles,” Opt. Express13, 8069–8082 (2005). [CrossRef] [PubMed]
  14. A. E. Cohen and W. E. Moerner, “Method for trapping and manipulating nanoscale objects in Solution,” Appl. Phys. Lett.86, 093109 (2005). [CrossRef]
  15. M. Armani, S. Chaudhary, R. Probst, and B. Shapiro, “Using feedback control of microflows to independently steer multiple particles,” IEEE J. Microelectromech. S.15, 945–956 (2006). [CrossRef]
  16. A. E. Cohen and W. E. Moerner, “Suppressing Brownian motion of individual biomolecules in solution,” Proc. Natl. Acad. Sci. USA103, 4362–4365 (2006). [CrossRef] [PubMed]
  17. Z. Shen and S. Andersson, “Tracking nanometer-scale fluorescent particles in two dimensions with a confocal microscope,” IEEE Trans. Contr. Sys. Tech.19, 1–10 (2011).
  18. A. P. Fields and A. E. Cohen, “Electrokinetic trapping at the one nanometer limit,” Proc. Natl. Acad. Sci. USA108, 8937–8942 (2011). [CrossRef] [PubMed]
  19. V. Levi, Q. Ruan, K. Kis-Petikova, and E. Gratton, “Scanning FCS, a novel method for three-dimensional particle tracking,” Biochem. Soc. Technol.31, 997–1000 (2003). [CrossRef]
  20. V. Levi, Q. Ruan, and E. Gratton, “3-D particle tracking in a two-photon microscope. Application to the study of molecular dynamics in cells,” Biophys. J.88, 2919–2928 (2005). [CrossRef] [PubMed]
  21. H. Cang, C. M. Wong, C. S. Xu, A. H. Rizvi, and H. Yang, “Confocal three dimensional tracking of a single nanoparticle with concurrent spectroscopic readout,” Appl. Phys. Lett.88, 223,901 (2006). [CrossRef]
  22. K. McHale, A. J. Berglund, and H. Mabuchi, “Quantum dot photon statistics measured by three-dimensional particle tracking,” Nano Lett.7, 3535–3539 (2007). [CrossRef] [PubMed]
  23. G. Lessard, P. Goodwin, and J. Werner, “Three-dimensional tracking of individual quantum dots,” Appl. Phys. Lett.91, 224,106 (2007). [CrossRef]
  24. H. Cang, D. Montiel, C. Xu, and H. Yang, “Observation of spectral anisotropy of gold nanoparticles,” J. Chem. Phys.129, 044,503 (2008). [CrossRef]
  25. K. McHale and H. Mabuchi, “Precise characterization of the conformation fluctuations of freely diffusing DNA: beyond Rouse and Zimm,” J. Am. Chem. Soc.131, 17901–17907 (2009). [CrossRef] [PubMed]
  26. A. J. Berglund and H. Mabuchi, “Performance bounds on single-particle tracking by fluorescence modulation,” Appl. Phys. B83, 127–133 (2006). [CrossRef]
  27. A. J. Berglund, K. McHale, and H. Mabuchi, “Feedback localization of freely diffusing fluorescent particles near the optical shot-noise limit,” Opt. Lett.32, 145–147 (2007). [CrossRef]
  28. Z. Shen and S. Andersson, “Optimal measurement constellation of the fluoroBancroft localization algorithm for position estimation in tracking confocal microscopy,” Mechatronics22, 320–326 (2012). [CrossRef]
  29. Q. Wang and W. Moerner, “Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap,” Appl. Phys. B99, 23–30 (2010). [CrossRef] [PubMed]
  30. A. E. Siegman, Lasers (University Science Books, 1986).
  31. K. A. Winnick, “Cramer-Rao lower bounds on the performance of charge-coupled-device optical position estimators,” J. Opt. Soc. Am. A3, 1809–1815 (1986). [CrossRef]
  32. H. Kao and A. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J.67, 1291–1300 (1994). [CrossRef] [PubMed]
  33. S. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express16, 22048–22057 (2008). [CrossRef] [PubMed]
  34. K. T. Seale, R. S. Reiserer, D. A. Markov, I. A. Ges, C. Wright, C. Janetopoulos, and J. P. Wikswo, “Mirrored pyramidal wells for simultaneous multiple vantage point microscopy,” J. Microsc.232, 1–6 (2008). [CrossRef] [PubMed]
  35. M. D. McMahon, A. J. Berglund, P. Carmichael, J. J. McClelland, and J. A. Liddle, “3D Particle trajectories observed by orthogonal tracking microscopy,” ACS Nano3, 609–614 (2009). [CrossRef] [PubMed]
  36. S. Zacks, The Theory of Statistical Inference (John Wiley & Sons, 1971).
  37. F. Pukelsheim, Optimal design of experiments (Society for Industrial and Applied Mathematics, 2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited