OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

Complex wavefront corrections for deep tissue focusing using low coherence backscattered light

Reto Fiolka, Ke Si, and Meng Cui  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16532-16543 (2012)
http://dx.doi.org/10.1364/OE.20.016532


View Full Text Article

Enhanced HTML    Acrobat PDF (939 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Aberrations and random scattering severely limit optical imaging in deep tissue. Adaptive optics can in principle drastically extend the penetration depth and improve the image quality. However, for random scattering media a large number of spatial modes need to be measured and controlled to restore a diffraction limited focus. Here, we present a parallel wavefront optimization method using backscattered light as a feedback. Spatial confinement of the feedback signal is realized with a confocal pinhole and coherence gating. We show in simulations and experiments that this approach enables focusing deep into tissue over up to six mean scattering path lengths. Experimentally the technique was tested on tissue phantoms and fixed brain slices.

© 2012 Optical Society of America

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(110.7050) Imaging systems : Turbid media
(290.1350) Scattering : Backscattering
(110.0113) Imaging systems : Imaging through turbid media
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 11, 2012
Revised Manuscript: June 28, 2012
Manuscript Accepted: June 29, 2012
Published: July 6, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Reto Fiolka, Ke Si, and Meng Cui, "Complex wavefront corrections for deep tissue focusing using low coherence backscattered light," Opt. Express 20, 16532-16543 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-15-16532


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009). [CrossRef] [PubMed]
  2. J. Mertz, “Nonlinear microscopy: new techniques and applications,” Curr. Opin. Neurobiol. 14(5), 610–616 (2004). [CrossRef] [PubMed]
  3. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  4. W. R. Zipfel, R. M. Williams, W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  6. P. H. Tomlins, R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D. 38(15), 2519–2535 (2005). [CrossRef]
  7. A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
  8. D. Kobat, N. G. Horton, C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011). [CrossRef] [PubMed]
  9. M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000). [CrossRef] [PubMed]
  10. N. Ji, D. E. Milkie, E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010). [CrossRef] [PubMed]
  11. P. Marsh, D. Burns, J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11(10), 1123–1130 (2003). [CrossRef] [PubMed]
  12. J. W. Cha, J. Ballesta, P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15(4), 046022 (2010). [CrossRef] [PubMed]
  13. J. Tang, R. N. Germain, M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012). [CrossRef] [PubMed]
  14. E. Beaurepaire, L. Moreaux, F. Amblard, J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett. 24(14), 969–971 (1999). [CrossRef] [PubMed]
  15. M. Pircher, R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol. 2(6), 1019–1035 (2007). [CrossRef]
  16. M. Rueckel, J. A. Mack-Bucher, W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006). [CrossRef] [PubMed]
  17. M. J. Yadlowsky, J. M. Schmitt, R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34(25), 5699–5707 (1995). [CrossRef] [PubMed]
  18. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994). [CrossRef] [PubMed]
  19. W. B. Bridges, P. T. Brunner, S. P. Lazzara, T. A. Nussmeier, T. R. O’Meara, J. A. Sanguinet, W. P. Brown., “Coherent Optical Adaptive Techniques,” Appl. Opt. 13(2), 291–300 (1974). [CrossRef] [PubMed]
  20. M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media,” Opt. Lett. 36(6), 870–872 (2011). [CrossRef] [PubMed]
  21. M. Cui, E. J. McDowell, C. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009). [CrossRef] [PubMed]
  22. A. Derode, P. Roux, M. Fink, “Robust Acoustic Time Reversal with High-Order Multiple Scattering,” Phys. Rev. Lett. 75(23), 4206–4209 (1995). [CrossRef] [PubMed]
  23. A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  24. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002). [CrossRef] [PubMed]
  25. V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20(3), 2220–2239 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited